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Abstract

In this report, we explore the application of compressed sensing for solving problems in

radio astronomy where the source images are generally sparse in some domain. We obtain

an incomplete set of noisy Fourier measurements of the image through the radio telescope

array and the goal is to reconstruct the image by making use of the sparse nature of the

images.

We consider the case where we have multiple sets of Fourier measurements corre-

sponding to different images and in addition we have some knowledge about overlapping

information between the images. By making use of this overlapping information we

should be able to perform better reconstruction than in the case where we perform the

reconstruction for the images independently.

We propose a coupled formulation where we solve a joint minimization problem to

perform simultaneous recovery of multiple images. We restrict ourselves to the case

where we have two images and present an alternating algorithm that solves the joint

minimization problem.

We conduct experiments on different classes of images that include images that are

sparse in spatial domain, images that are sparse in wavelet domain and images that are

sum of a spatial domain sparse component and a wavelet domain sparse component. In

all the cases we observed that the coupled formulation that does simultaneous recovery

performs better as compared to the case where we perform independent reconstructions.

We provide a theoretical justification for the improvement in performance while using

the coupled formulation for recovering images simultaneously.
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Chapter 1

Introduction

The broad goal of the field of signal processing is to reconstruct a signal and gain insights

into its characteristics based on a series of sampling measurements obtained at discrete

time intervals. For a general signal, this task is impossible due to non-availability of data

in between two sampling intervals. But, with some prior information about the signal,

measurements can be conducted in appropriate ways that enable reconstruction of signals

to the desired accuracy.

For example, for a smooth signal which varies slowly with time, sample and hold type

of measurements can be conducted to reconstruct the signal to the required accuracy. For

another category of signals namely bandlimited signals, the Nyquist-Shannon sampling

theorem was an important breakthrough in the field of signal processing. The Nyquist-

Shannon sampling theorem states that perfect reconstruction is possible from a set of

uniformly spaced samples taken at the Nqyuist rate of twice the highest frequency present

in the signal.

Unfortunately, in many applications it may be too costly or physically impossible to

build devices capable of sampling at the Nyquist rate or even if it is possible we may end

up with far too many samples to efficiently store and process. To address the challenges

involved in dealing with such high dimensional data we often depend on compression,

which aims to find the most concise representation of a signal that is able to achieve

a target level of distortion. Transform coding, one of the most popular techniques for

signal compression, relies on finding a basis or a frame that provides sparse or compressible

representations for signals in a class of interest. Both sparse and compressible signals can

be represented with high fidelity by preserving only the the values and locations of the

1
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largest k coefficients of the signals, where k � n, and n is the length of the signal.

Compressed sensing is a framework for signal acquisition and sensor design that en-

ables a potentially large reduction in the sampling and computation costs for sensing

signals that have a sparse or compressible representation. The fundamental idea behind

compressed sensing is rather than first sampling at a higher rate and then compressing

sampled data, we would like to directly sense the data in compressed form at a much

lower sampling rate. The field of compressed sensing grew out of the work of Candes, Tao

and Romberg who showed that, a finite-dimensional signal having a sparse or compress-

ible representation can be recovered from a much smaller number of linear measurements

than what Nyquist rate sampling demands [1, 2, 3]. Compressed sensing methods are

fast and highly configurable, which makes them highly attractive for a lot of problems

such as improving MRI imaging [2], developing single pixel cameras [4], face recognition

algorithms etc. However compressed sensing is still a recent field and its applicability to

a large number fields has not yet been fully studied. Basic information on compressed

sensing can be obtained from [5]. For a complete up-to-date review on compressed sens-

ing refer to [6]. As a part of this thesis, we study the application of compressed sensing

methods for improving radio astronomy imaging techniques.

Compressed Sensing and Radio Astronomy

Radio Astronomy studies celestial objects at radio frequencies around the metre wave-

length, by utilizing the techniques of radio interferometry and aperture synthesis. Math-

ematically, the problem is equivalent to reconstructing the image of the astronomical

object from incomplete and noisy Fourier measurements of the image. From the theory

of compressed sensing we know that such measurements may actually suffice for accurate

reconstruction of the image provided that the image is sparse in some domain.

Our earlier work [7] focused on applying compressed sensing techniques to recover an

image of astronomical sources from a an incomplete set of its Fourier measurements. Also,

we analyzed the optimality of the GMRT telescope [8] with respect to reconstruction using

compressed sensing techniques and came up with optimal antenna locations for additions

to the array.

In this project we consider the case where we have two sets of Fourier measurements
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corresponding to two different images but in addition we have knowledge about some

overlapping information between the two images. The goal is to use this additional

information and perform simultaneous recovery of both images that performs better than

if we reconstruct the images independently. We propose an alternating algorithm that

performs simultaneous recovery by solving a joint minimization problem and then conduct

experiments to compare the results of the alternating algorithm with those obtained from

independent reconstructions.

Organization of the report

The organization of the report is as follows:

1. Chapter 2 introduces radio astronomy and the basics of radio imaging techniques

such as radio interferometry and aperture synthesis.

2. Chapter 3 presents the mathematical model for the compressed sensing problem

in a simultaneous recovery setting. We present an alternating algorithm to solve

the joint minimization problem to perform simultaneous recovery.

3. Chapter 4 analyzes the experiments conducted on simulated data. In this chapter

the performance of the alternating algorithm that performs simultaneous recovery

is compared against that of the algorithm that reconstructs images separately.

4. Conclusion and Further Work



Chapter 2

Compressed Sensing applied to

Radio Astronomy

2.1 Introduction to Radio Astronomy

Radio Astronomy is one science which was found by an accident. Karl Jansky in August

1931 accidentally detected noise on his radar equipment, which repeated at the same

sidereal 1 time. This observation led to him deducing correctly that the source was a

cosmic source, and not a terrestrial one. This finding gave birth to the field of radio

astronomy. Later rapid development of radar technology during the World War II was

translated into radio astronomy technology after the war and the radio astronomy field

improved dramatically.

Figure 2.1: Electromagnetic spectrum2

Radio telescopes are used to study astronomical objects in the radio wavelengths,

ranging from a few millimetres to 10 metres. In exception to the visible wavelengths

(400nm to 700nm), radio wavelength range is the only other wavelength range which

1The rotation period of the earth with respect to the stars
2Image Credits: http://www.hardhack.org.au/files/electromagnetic_spectrum.gif

4
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2.1. INTRODUCTION TO RADIO ASTRONOMY 5

can be observed from the surface of the earth. Other wavelengths, like the gamma,

X-ray, microwave infra-red wavelengths, can be observed only from outside the earth’s

atmosphere.

The functioning of radio telescopes varies vastly from that of standard optical tele-

scopes and has many concepts related to communication engineering. One major differ-

ence is that radio telescopes are typically huge in physical size. For example, the GMRT

Telescope of India [8], has 30 radio antennas, spread over a diameter of 30km, with each

antenna having a diameter of 45 metres. In the next section, we will try to understand

the need for such high sizes, and why radio interferometry is essential for the operations

of a radio telescope.

Telescope angular resolution

For any general telescope, the angular resolution (θ) is inversely proportional to the size

of the aperture, or the size of the collecting dish (D). The relationship is as given below:

θ ∼ λ/D (2.1)

where λ is the wavelength. As the radio wavelengths are much higher as compared to

the wavelengths of optical telescopes, the size of the telescope required is much higher.

For example, for 1 arcminute resolution we require a telescope with size of the order of

10 km which is clearly gigantic. Since it is highly impractical to build radio dishes of

this size, radio astronomers have come up with an ingenious solution to circumvent this

problem, known as radio interferometry. We will briefly look into the working of radio

interferometry and how it can be used to do radio observations.

India itself is home to two of the best telescopes in the metre wavelength, the ORT,

Ooty Radio Telescope, and the GMRT, the Giant Metrewave Radio Telescope. This

project involves improving the signal processing operations of the GMRT Telescope.

Hence, we will briefly look at the major features of these telescopes relevant to the

project in the next section.
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2.1.1 The GMRT Telescope

We briefly introduce the GMRT Telescope here. For more detailed information, please

refer to [8, 9].

The National Centre for Radio Astronomy (NCRA), has set up GMRT at Khodad,

near Pune. The Radio Telescope is known as the Giant Metrewave Radio Telescope, as

it operates mainly in the range of metre-wavelength radio waves. GMRT consists of 30

fully steerable gigantic parabolic dishes of 45m diameter each, arranged in a Y-shaped

array, spread over a circle of diameter around 30 km. 14 telescopes are arranged randomly

in the central 1 square km area, while the other 16 are arranged in Y-shape arms each

having length around 14km.

The array operates in six frequency bands centered around 50, 153, 233, 325, 610

and 1420 MHz. In communication engineering, this is the UHF ( Ultra High Frequency)

band. A single radio image is constructed from observations from all the 30 telescopes

together, typically for 8 hours.

Figure 2.2: GMRT Antenna map 3

3Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Images/Diagrams/yarray.gif

http://gmrt.ncra.tifr.res.in/gmrt_hpage/Images/Diagrams/yarray.gif
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We will look into the details of how a radio telescope works, with an emphasis on

GMRT.

2.1.2 Radio Interferometry

This section is based on [9] and [10]. In Radio Interferometry, we first look at the Van-

Cittert Zernike theorem, which forms the fundamentals of the field. This theorem along

with the technique of aperture synthesis gives us a way of estimating the Fourier transform

of the image field using a pair of antennas at a time to obtain a set of readings.

Van-Cittert Zernike Theorem

The Van-Cittert Zernike theorem relates the spatial coherence function 〈E(r1)E
∗(r2)〉

at two points on the ground with the intensity distribution of the incoming radiation,

I(s). Here E(r) refers to the electric field at the point at a position r as a result of the

source. The spatial coherence function between two locations r1 and r2 is also known

as the visibility function and is represented as V (r1, r2). The theorem states that the

visibility function, V (r1, r2) depends only on the vector r1 − r2 , and that under some

mild assumptions:

V (r1, r2) = F{I(s)}, (2.2)

where F represents the 2D Fourier transform operation. We will try to give a brief

explanation for the theorem which would be sufficient to appreciate our problem of study.

For a more rigorous treatment, please refer to [9].

We assume that the sources of interest are distant sources, and can be approximated

by a brightness distribution on a celestial sphere of radius R, where R →∞. Note that

the celestial sphere is an imaginary sphere concentric with a particular celestial body

(here the Earth). Consider a two element interferometer with antenna 1 and antenna 2

located on the ground at point r1(x1, y1, z1) and r2(x2, y2, z2) respectively. Consider an

infinitesimal source positioned at r(x, y, z) in the sky. If the electric field at the point r

is given by ε(r), then the observed electric field at the antenna 1 at location r1 is given
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by,

E(r1) =

∫
ε(r)

e−j
2π
λ
d(r1,r)

d(r1, r)
dΩ1, (2.3)

where d(a, b) represents the distance between the two points at positions r and r1 respec-

tively. dΩ is the solid angle subtended by the infinitesimal source. Assuming that the

electric field caused by the source at two different points are uncorrelated, we obtain

〈E(r1), E
∗(r2)〉 =

∫
I(r)

e−j
2π
λ
[d(r1,r)−d(r2,r)]

d(r1, r)d(r2, r)
dΩ. (2.4)

Now converting the vector equation in terms of the direction cosines (l,m, n) of the source

located at position r, and using the condition that |r1 − r2| � R, we obtain

〈E(r1), E
∗(r2)〉 =

1

R2

∫
I(l,m)e−j

2π
λ
[l(x2−x1)+m(y2−y1)+n(z2−z1)] dldm√

1− l2 −m2
. (2.5)

Now, we can define the baseline coordinate system,

u = (x2 − x1)/λ , v = (y2 − y1)/λ , w = (z2 − z1)/λ.

On changing the coordinates to the baseline coordinates, and neglecting the constant R2,

we obtain,

V (u, v, w) =

∫
I(l,m)e−j2π[lu+mv+nw]

dldm√
1− l2 −m2

. (2.6)

This fundamental relationship capturing the visibility and the observed intensity is

the statement of the generalized Van-Cittert Zernike theorem. It is observed that, the

relationship is not a perfect Fourier transform relationship, as we have an additional
√

1− l2 −m2 factor. If we make some more reasonable assumptions, this equation reduces

to a 2D Fourier transform.

Small Angle Approximation

Consider the case, where we assume that the object to be observed is restricted to a small

solid angle in the sky. In such a scenario, if the unit vector n̂ points towards the object,
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we have
√

1− l2 −m2 = n ≈ 1. In this scenario,

V (u, v, w) = e−j2π[w]
∫
I(l,m)e−j2π[lu+mv]dldm. (2.7)

Note that this is a good approximation for radio astronomy, as for most of the practi-

cal antennas, the primary beam is not more than 1◦. Astronomers, normally directly

use the phase corrected visibilities, V (u, v) = V (u, v, w)ej2π[w]. Thus we have the final

relationship,

V (u, v) =

∫
I(l,m)e−j2π[lu+mv]dldm. (2.8)

Further, by making the small angle approximation we are approximating the source to

lie on the tangent plane to the celestial sphere instead of on the sphere itself. This is

because a source point is now parameterized by only two direction cosines (l,m).

Hence, we have proved the Van-Cittert Zernike theorem. Having a Fourier relationship

opens up a lot of mathematical analysis techniques, which can be efficiently used to

retrieve I(l,m) from the visibilities V (u, v). Note that, for a fixed source and a pair of

antenna locations, we have a single Fourier measurement, which is quite inadequate to

retrieve the entire intensity distribution. Next we look at how astronomers have designed

a novel technique to retrieve more Fourier measurements by making use of the rotation

of the earth.

2.1.3 Aperture Synthesis

As we saw in the previous section, we obtain a single measurement in the Fourier domain

from a pair of antennas. The aim is to obtain as many points as possible in the Fourier

domain and subsequently recover the image using the Fourier inverse. We parameterize

the Fourier domain as (u, v), and the points sampled in this plane by a given system of

antennas is called the “u−v coverage”. One can improve the u−v coverage by having N

antennas, so that at any one instant we have
(
N
2

)
measurements, one from each antenna

pair. For example, for GMRT with 30 antennas, we obtain 435 Fourier measurements,

for a single instant. But, even these number of Fourier samples are still insufficient for

deconvolution of most source images. If we consider an image resolution of 256× 256, we

need a total of 65536 Fourier measurements to get the exact image by taking the Fourier
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inverse. Only 435 (i.e 0.66%) of the total Fourier measurements captures just a fraction

of the total frequency information present in the image and is insufficient for getting back

the image by directly applying the Fourier inverse.

Most of the objects that are imaged using radio astronomy do not change much with

time (at least on the scale of a few years). Thus one need not take all the Fourier

measurements at the same time. If the antennas are moved with respect to the source,

it will result in different (u, v) measurements. Thus, in theory it is possible to measure

an entire Fourier region using just two antennas. But this is a very cumbersome and a

practically non-feasible method, as the antenna sizes are of the order of ∼ 50m.

Figure 2.3: Aperture Synthesis for two antenna system 4

Radio Astronomers, instead use the motion of earth. As the earth rotates, the relative

location of the antennas with respect to the source changes, thus providing more number

of (u, v) measurements, and improving the u− v coverage.

This method of using earth’s rotation is known as “Aperture Synthesis”. From the

previous section that contains the proof of the Van-Cittert Zernike theorem it may not be

completely clear as to how rotation of the earth results in different (u, v) measurements

since it seems as if u and v depend only on x2 − x1 and y2 − y1 and should not change

as the earth rotates. The reason lies in the substitutions we have made for u and v.

When we substitute u = x2−x1 and v = y2− y1 (ignoring the λ factor) we are implicitly

defining the U and V axis where the U axis is parallel to the X axis and the V axis is

parallel to the Y axis. Now as the earth rotates the X and Y axes also rotate but the

U and V axes remain stationary as they are defined with respect to the source. The

measurement x1 − x2 is no longer along the U axis (refer to Fig. 2.4) and hence our

4Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/

http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/
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previous substitutions are invalid. In order to understand how the (u, v) coordinates

change as the earth rotates let us first define an astronomical coordinate system for the

source and a terrestrial coordinate system for the antennas.

Let us consider an astronomical coordinate system where the position of a source in

the sky is specified by the pair (HA, δ) as shown in Fig. 2.5. Here HA refers to the hour

angle and measures the angular distance of an object westward along the celestial equator

from the observer’s meridian to the hour circle passing through the object and δ refers

to declination and measures the angle distance of an object perpendicular to the celestial

equator. As the earth rotates, the hour angle of the source varies but the declination

remains constant.

The antenna locations are specified in the terrestrial coordinate system which is a right

handed coordinate system as shown in Fig. 2.6. The (X, Y ) plane is parallel to the earth’s

equator with X in the meridian plane and Y towards east. Z points towards the north

celestial pole. In terms of the astronomical coordinate system (HA, δ), X = (0h, 0◦),

V

U X

X'

Y
Y'

x2, y2

x1, y1

x1', y1'

x2', y2'

Figure 2.4: Effect of earth’s rotation on u − v coordinates: The blue vectors show the initial

relative coordinates x2 − x1 and y2 − y1. The green vectors show the same relative coordinates

after the earth has rotated. The vectors are no longer aligned along the U − V axes.

5Image Source: http://en.wikisource.org/wiki/The_American_Practical_Navigator/

Chapter_15
6Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node84.

html

http://en.wikisource.org/wiki/The_American_Practical_Navigator/Chapter_15
http://en.wikisource.org/wiki/The_American_Practical_Navigator/Chapter_15
http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node84.html
http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node84.html
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Figure 2.5: Astronomical coordinate system: Celestial Meridian refers to the observer’s local

meridian 5

Figure 2.6: Terrestrial coordinate system: The (X,Y, Z) coordinate system used to specify

antenna locations 6

Y = (−6h, 0◦) and Z = (δ = 90◦). The (X, Y, Z) coordinates of an antenna in this

system do not change as the earth rotates.

For aperture synthesis the antenna positions are specified in a coordinate system such

that the separation of the antennas is the projected separation in plane normal to the

phase center. Note that the phase center refers to the antenna which is assumed to have

zero delay since all the antennas are at slightly different distances from the source and will

receive the same signal at varying delays. In other words, in such a coordinate system the

separation between the antennas is as seen by the observer sitting in the source reference

frame. This system, shown in Fig 2.7, is the right-handed (u, v, w) coordinate system
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fixed on the surface of the earth at the array reference point (usually the phase center).

The u− v plane always parallel to the tangent plane in the direction of phase center on

the celestial sphere, and the w axis is along the direction of phase center. The u axis is

along the astronomical East-West (E-W) direction and v axis is along the North-South

(N-S) direction. The (u, v) coordinates of the antennas are the E-W and N-S components

of position vectors. When observed from the earth, as the earth rotates, the u− v plane

rotates with the source in the sky but the antennas remain stationary. Thus the rotation

of the earth results in changing (u, v, w) coordinates and generates tracks in the u − v

plane. We will obtain the locus of a point in the u − v plane generated by a pair of

antennas later.

Figure 2.7: Relationship between the terrestrial coordinates (X,Y,Z) and the (u, v, w) coordi-

nate system. The (u, v, w) system is a right handed system with the w axis pointing to the

source S. 7

The relationship between the (X, Y, Z) and (u, v, w) coordinates of an antenna is as

follows,


u

v

w

 =


sin(HA) cos(HA) 0

− sin(δ) cos(HA) sin(δ) sin(HA) cos(δ)

cos(δ) cos(HA) − cos(δ) sin(HA) sin(δ)



X

Y

Z

 . (2.9)

As earth rotates, the HA of the source changes continuously, generating a different set

of (u, v, w) coordinates for each antenna pair at every instant of time. We can use (2.9)

7Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node83.

html

http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node83.html
http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node83.html
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to determine that the locus of projected antenna-spacing components u and v defines an

ellipse with hour angle as the variable. Assuming one of antennas forming the pair is

located at (0, 0, 0), and the other is at (X, Y, Z), the equation of the ellipse is given by

u2 +

(
v − Zcosδ
sinδ

)2

= X2 + Y 2, (2.10)

where (HA, δ) defines the direction of the source. From (2.10 we can make the following

observations about the locus:

1. The eccentricity of the ellipse depends solely on the declination of the source. When

δ = 90, the locus is a circle and when δ = 0, the locus is a straight line.

2. The length of the axis of the ellipse along the u direction depends only on X2 +Y 2.

Thus if the antennas are spaced far apart either in X or Y direction the resulting

locus will cover higher frequencies in the Fourier domain. (larger values of u and v)

3. The centre of the ellipse lies along the v axis and its distance from the origin depends

on Z and δ. When δ = 90, the centre of the ellipse is independent of Z and lies at

the origin.

These observations will be useful when we want to analyse the sampling distribution

obtained by a given set of antennas using aperture synthesis.

The u − v coverage for an instant of the GMRT Telescope is shown in Fig. 2.8 and

the u− v coverage for an 10 hour synthesis at different declinations is shown in Fig. 2.9 .

2.1.4 Dirty Beam and Dirty Images

From (2.8) we know that a Fourier transform relationship exists between the visibilities

and the intensity distribution. Taking the inverse Fourier transform, we obtain,

I(l,m) =

∫
V (u, v)ej2π[lu+mv]dudv. (2.11)

If the visibilities V (u, v) are known at all values of u and v, then we can recover

the intensity distribution perfectly using just the inverse Fourier transform. But since

the visibilities are known only at certain locations depending upon the relative distance

8Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/index.html
9Image Source: http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/index.html

http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/index.html
http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/index.html
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Figure 2.8: UV Coverage for an instant 8

Figure 2.9: UV Coverage for 10 hours for declination = 19,−30 9
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between antenna pairs, most of the time we only have an incomplete description of the

visibilities. We can characterize this by a sampling function, which is an identity function

taking value 1 at locations sampled by the antenna setup and 0 otherwise. We call this

sampling function the u− v map of the telescope. Note that the u− v map depends not

only on the positions of the antenna but also depends upon the location of the source if

we are using aperture synthesis.

The image obtained by taking the inverse Fourier transform of the visibilities mul-

tiplied by the sampling function corresponding to the u − v map is known as the dirty

image,

ID(l,m) =

∫
S(u, v)V (u, v)e2πj[lu+mv]dudv. (2.12)

Here, the sampling function is the sum of delta functions at the (u, v) locations corre-

sponding to the u− v map,

S(u, v) =
N∑
k=1

δ(u− uk, v − vk), (2.13)

where (uk, vk) belong to the u− v map ∀k. From the properties of the Fourier transform

we have,

ID = F−1(S) ∗ F−1(V ). (2.14)

Here, F−1(S) = B is also known as the dirty beam. Also, from F−1(V ) = I, we obtain,

ID = B ∗ I. (2.15)

Thus, the dirty image can be thought to be the convolution of the dirty beam with the

true intensity distribution.

To obtain an intuition regarding the dirty beam and dirty image, consider the follow-

ing example (Fig, 2.10) where the intensity distribution consists only of one star in the

centre of the field at (l,m = 0). In this case, assuming unit intensity value for the star,

I = δ(l,m). In such a scenario, ID = B. In the case where the image consists of multiple

stars of different intensity values or an extended source such as a nebula , the dirty image

is not so intuitive but nevertheless the relationship in (2.15) holds. The dirty image is
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always used as a starting point for any iterative method to recover the true intensity

distribution I.

Figure 2.10: GMRT map and dirty beam for single star at (l,m) = (0, 0)

2.1.5 Deconvolution Operation

As we saw earlier in (2.15), the dirty image is the convolution of the dirty beam and the

real intensity distribution. One can obtain the dirty image by taking the inverse Fourier

transform of the visibilities V (u, v) by assigning a value of 0 at the points where data is

not available, i.e at points not on the u − v map. Also, the dirty beam is known based

on the antenna setup and the location of the source. Thus the problem in hand can be

thought of as a deconvolution problem , where we need to deconvolve the dirty image ID

to obtain I.

In general this deconvolution problem is not well defined, and does not guarantee a

unique solution. But, for radio astronomical images, we have prior knowledge about the

nature of the images such as sparsity in the natural domain or some other domain, and

can incorporate this into the solution. For example, for an open cluster of stars, we can

assume that the image is sparse in the natural domain with only a few stars randomly

lying in the field. One deconvolution algorithm based on this concept is the CLEAN

Algorithm [9], which has decent performance when the image consists of a collection of

point sources. Other deconvolution techniques include matching pursuit algorithms such
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as Orthogonal Matching Pursuit (OMP) and methods such as the Maximum Entropy

Method [9].

2.2 Motivation for using Compressed Sensing

Compressed sensing is a very useful technique where using only a small number of linear

measurements, the recovery of a sparse or compressible image is possible. Typical radio

astronomy objects, can be characterized as sparse or compressible in some domain.The

two of the most common classes of images are images of extended sources, and open

clusters of stars. Fig 2.11 gives examples of both types of sources: An open cluster ,the

famous butterfly cluster, M6 and an extended source, Cassiopeia A supernova remnant.

Figure 2.11: Different types of sources in Radio Astronomy: Open cluster M6 and Cassiopeia

A supernova remnant

In case of open clusters, the image is sparse in the natural domain, while in case

of the extended sources, the image is compressible under the wavelet domain. Note

that when we say a signal is sparse it means that the image can be represented exactly

using only k coefficients where k � n and n is the length of the signal. When we say

a signal is compressible it means that the signal can be well approximated using only

k coefficients where k � n. In the case of images of extended sources we expect the

image to have only few large coefficients in the wavelet domain but the values of the

other coefficients are not exactly zero and thus the image is compressible and not sparse.

Also, Fourier measurements are linear in nature, thus satisfying the second condition
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for applying compressed sensing. Thus one can formulate the problem as, “recovering a

sparse solution from an incomplete description of its Fourier transform”.

For compressed sensing methods to give the correct solution, it was shown in the

seminal paper by Candes, Tao [2] that the measurement matrix must have the Restricted

Isometric Property. Exact recovery of sparse signals under such conditions is possible

as long as we have a certain number of observations. This concept is extended to com-

pressible signals in [3] where the recovery is correct in a l2 norm sense, i.e. the l2 norm

difference between the recovered solution and the actual solution is upper bounded. Also

in [2] it is shown that it is possible to recover a signal from an incomplete set of randomly

chosen Fourier samples when the signal is sparse. This result gives us a hope that if the

GMRT sampling map(i.e the u− v map), in a way corresponds to randomly chosen fre-

quency samples, then using Tao, Candes’ result, one can guarantee that the compressed

sensing methods will converge to the exact solution for sparse signals and will result in a

solution with a bounded error in case of compressible signals.

The other important motivations for radio astronomers to use compressed sensing

include:

1. Compressed sensing algorithms can be applied for wide-field interferometry [11],

where the Fourier transform relationship does not hold true.

2. Compressed sensing techniques allow for non-uniform, successive gridding etc.[9]

3. Compressed sensing techniques allows for simultaneous recovery of multiple images

from respective incomplete fourier data when we have additional information about

some overlap between the two images. This is the main focus of our report.

In many practical scenarios it may be the case that we do not have sufficient number

of observations to obtain a good reconstruction of the image using conventional com-

pressed sensing technique. However it may be possible to obtain measurements for two

different images that have some “information overlap”. Though reconstruction of each

image separately may be poor, solving for them simultaneously making use of the infor-

mation overlap may allow us to obtain better reconstruction of both the images. Here

information overlap refers to any set of features extracted from both the images that

should match. This can be determined by registration of the two images or by virtue of

how the measurements were obtained. We will consider two kinds of information overlap,
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1. Pixel value overlap: Value of certain pixels in first image match value of some other

pixels in the second image.

2. Sub-image pixel overlap: This is a form of feature vector overlap. The reconstructed

images are passed through a linear operator and in the resultant images values of

some pixels match.

2.3 Existing Literature on Compressed Sensing ap-

plied to Radio Astronomy

There are two major lines of research in this field. One line of the work is in developing

better deconvolution methods. The second line of research is on using compressed sensing

to design better telescopes, structurally and geometrically.

[Wiaux.et.al] have multiple papers on applying compressed sensing to radio astron-

omy [12]. Wiaux has also studied the application of compressed sensing to wide field

radio astronomy [11]. The other notable papers on this problem includes the work by

Stephen Hardy [13], Tim Cornwell [14]. Most of the work in this line of research is con-

fined to showing theoretically, and based on simulated data that the compressed sensing

algorithms indeed work for the deconvolution step in radio astronomy in a conventional

setting i.e. without simultaneous recovery. The paper on distributed compressed sensing

by Baron et. al. [15] presents as a joint formulation that allows for simultaneous recov-

ery of two signals when the two signals can be thought of as having a common sparse

component and sparse innovations. We will see that our formulation reduces to a variant

of the one presented in the paper under a specific setting. To the best of our knowledge,

the simultaneous recovery problem in compressed sensing has not been explored for radio

astronomy in particular.

The second line of thought tries to analyze the optimality of the geometrical array

locations with respect to compressed sensing such as the work by Clara Fannjiang [16].

This line of research is interesting, due to the upcoming installation of additional an-

tennae in the GMRT array, and the construction of the massive SKA(Square kilometer

array10) Radio Telescope. In our earlier work [7] we explored the problem of find optimal

10https://www.skatelescope.org/

https://www.skatelescope.org/
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antenna locations for additions to the GMRT array for improving performance of the

reconstruction algorithm. We concluded that the current GMRT setup is insufficient for

good performance while using aperture synthesis for a duration of 4 hours or lesser and

presented a greedy algorithm that determines the antenna locations for 8 new additions

to the array that significantly improves performance.

In the next chapter we present the problem formulation for joint reconstruction of

images from multiple observations when the images have some ‘information overlap” and

devise an alternating algorithm to solve the joint reconstruction problem.



Chapter 3

Joint reconstruction from multiple

observations

In the previous chapter we saw that the problem is to determine the image(i.e intensity

distribution) from an incomplete set of Fourier measurements since we have data available

only at certain points in the Fourier domain, determined by the u − v coverage of the

antenna setup. In general we assume that we have data available at points in the Fourier

domain determined by the “sampling map”. Next we present the problem formulation.

3.1 Problem Formulation

We consider the problem where we have two incomplete sets of Fourier measurements

corresponding to two different images and further we have knowledge about some in-

formation overlap between the two images. We want to make use of this overlapping

information to perform simultaneous recovery of both images. Next we formulate the

simultaneous recovery problem,

Let x and y be the discretized vectors of the lexicographic ordering of the intensity

distributions (i.e. the images) of size N × 1. Corresponding to each image we have a set

of linear measurements obtained as,

bx = Φxx+ nx (3.1)

by = Φyy + ny, (3.2)

where Φx and Φy are Mx × N and My × N measurement matrices respectively and nx

22
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and ny are terms corresponding to the noise added to the system while obtaining the

measurements (Mx < N, My < N).

Let both x and y be sparse/compressible in the same basis and thus they can be

represented as,

x = Ψzx (3.3)

y = Ψzy, (3.4)

where zx and zy are N × 1 sized vectors containing only few non-zero/large coefficients

and Ψ is the N ×N matrix with columns as the basis vectors of the desired basis.

Let there be some information overlap between x and y. We will restrict ourselves to

only those features that can be extracted through a linear operation on the images. Let

fx and fy be the S × 1 feature vectors obtained from x and y as,

fx = Bxzx (3.5)

fy = Byzy, (3.6)

where Bx and By are S×N feature extraction matrices. In general the features could also

be extracted through a non-linear operator and as long as the operator is differentiable

and Lipschitz continuous the same analysis as presented here holds true. For example if

the last c columns of image corresponding to x overlap with the first c columns of the

image corresponding to y then Bx and By will be cn×N matrices where we assume the

images to be of size n × n and N = n2. Bx and By will have rows with all entries zero

except the position corresponding to the location of a certain pixel in the lexicographic

ordering of the image. Under ideal reconstruction, the two feature vectors must match

because they correspond to the overlapping part.

||fx − fy||22 < εf , (3.7)

where εf is some tolerance threshold. Next we present several formulations that can be

used to solve this problem:

1. Formulation-1 Using conventional compressed sensing methods, we will first solve
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for z∗x and z∗y independently as follows and obtain x∗ and y∗ using (4.8) and (4.9):

z∗x = arg min
zx
‖zx‖1 for ‖ΦxΨzx − bx‖22 ≤ εx (3.8)

z∗y = arg min
zy
‖zy‖1 for ‖ΦyΨzy − by‖22 ≤ εy, (3.9)

where εx and εy are variances corresponding to nx and ny respectively.

2. Formulation-2 There is an alternative formulation which allows for unconstrained

optimization.

z∗x = arg min
z
F (z) ≡ ‖ΦxΨz − bx‖22 + λx‖z‖1 (3.10)

z∗y = arg min
z
F (z) ≡ ‖ΦyΨz − by‖22 + λy‖z‖1, (3.11)

where λx and λy must be chosen appropriately to obtain same results as obtain

using formulation-1. Greedy methods such as ISTA and FISTA make use of this

formulation to solve the problem.

3. Formulation-3 Instead of solving for x and y separately we can solve for them

simultaneously making use of the information overlap by the following formulation

for unconstrained optimization,

z∗x, z
∗
y = arg min

zx,zy
F (zx, zy), (3.12)

where,

F (zx, zy) ≡ ‖ΦxΨzx−bx‖22+‖ΦyΨzy−by‖22+λx‖zx‖1+λy‖zy‖1+µ||fx−fy||22. (3.13)

Here, we have the four terms present from Formulation-2 but in addition we have a

“coupling term” ||fx− fy||22 along with the “coupling parameter” µ. The parameter

µ will decide the degree of overlap in the reconstructed images and setting µ = 0 will

revert back to Formulation-2. Here λx, λy and µ must be chosen appropriately to

ensure convergence to correct results. We propose an alternating algorithm to solve

this optimization problem which is in similar lines to the ISTA or FISTA algorithm

in one argument. This formulation reduces to the formulation JSM-1 presented in

[15] when Bx = By, but with a subtle difference. In the formulation presented in

[15] the common part has to be same at every iteration of the algorithm but in
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our formulation we allow the common part in both images to take different values

during the course of the algorithm but reach close to being same at convergence

depending upon the weight µ.

3.2 Alternating Algorithm for Simultaneous Recov-

ery

The alternating algorithm is a generalization of the ISTA which is a proximal gradient

algorithm. We first briefly look at proximal methods and then the ISTA and FISTA

algorithm and finally present the alternating algorithm.

3.2.1 Proximal Methods

Proximal methods are a higher level of abstraction than classical optimization algorithms

such as gradient descent. The basic constituent of a proximal method is the proximal op-

erator, which essentially solves a simple convex optimization problem [17]. The proximal

operator for the scaled function f at a point x with respect to parameter λ is given by,

proxλf (x) = arg min
y

(
f(y) +

1

2λ
‖x− y‖2.

)
(3.14)

We refer to proxλf (x) as the proximal operator of f with respect to parameter λ at point

x. Here the ‖‖x − y‖‖2 term keeps the mapped point in the proximity of the argument

x and the min f(y) term, drives the mapped point towards the minima of the function f.

The parameter λ decides which of the two factors dominates.

Consider the figure 3.1. Here, the proximal operator maps the blue points to the red

points. The mapped points come closer to the minima, but still remain in proximity of

the original blue point.

3.2.2 Proximal operator for smooth functions

1. Consider a smooth function f(x).

1Image Source: http://www.stanford.edu/~boyd/papers/pdf/prox_algs.pdf

http://www.stanford.edu/~boyd/papers/pdf/prox_algs.pdf
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Figure 3.1: Effect of the Proximal Operator 1

2. The proximal operator for f with respect to parameter t at point x is given by:

proxtf (x) = arg min
y

(
f(y) +

1

2t
‖x− y‖2

)
. (3.15)

As, the mapped point is expected to be in the proximity of the original point x, we

use a linear approximation of f(y) at x and thus we have,

proxtf (x) = arg min
y

(
f(x) + (y − x)T∇f(x) +

1

2t
‖x− y‖2

)
. (3.16)

3. On simplification, we obtain:

proxtf (x) = arg min
y

(
1

2t
‖y − (x− t∇f(x)) ‖22

)
. (3.17)

Thus for smooth convex functions,

proxtf (x) = (x− t∇f(x)) (3.18)

4. Note that this is the exact gradient step for stepsize t, in the gradient descent

method. Thus, one can interpret the proximal algorithms as a generalization of

gradient descent algorithms.
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Proximal operator for l1 norm

We next consider the proximity operator for the l1 norm function.

1. Let the l1 norm function be g(x),

g(x) = ‖x‖1 =
n∑
i=1

|xi| (3.19)

2. From [17], the proximal operator for g with respect to parameter α at point x is

given by :

proxαg(x) = (|xi| − α)+sgn(xi) (3.20)

Here, sgn(x) is the standard signum function.

3. The (z)+ function takes the maximum of z and 0:

(z)+ = z, z ≥ 0 (3.21)

= 0, z < 0. (3.22)

3.2.3 The ISTA Algorithm

The ISTA, Iterative Shrinkage and Thresholding Algorithm [18] is a proximal gradient

algorithm, which is used to minimize the functions of the kind:

F (x) = f(x) + g(x) (3.23)

1. x ∈ Rn, f(x) is a smooth convex function, while the function g(x) is convex but

non-smooth.

2. First derivative of f(x) satisfies a Lipschitz condition with constant L, i.e.

‖f (1)(x)− f (1)(y)‖2 ≤ L‖x− y‖2. (3.24)

3. Starting from an initial point x0 we apply the proximity operator on functions f(x)
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and g(x) successively to obtain the next iterate [19],

xk+1 = proxλtg(proxtf (x
k)). (3.25)

4. Since f(x) is smooth, from (3.18),

xk+1 = proxλtg
(
xk − t∇f(xk)

)
. (3.26)

5. Note, that the step size t is chosen as 1
L

, and the proximity parameter λ for g(x)

needs to be chosen appropriately, for the algorithm to work correctly and also be

fast enough.

The pseudo-code for the ISTA algorithm is given below:

ISTA pseudo-code

We only consider the ISTA algorithm for a fixed stepsize. For a backtracking variant,

and more information on the standard implementation, please refer to [18]

Algorithm 1: ISTA with constant stepsize

Data: initial value x0, L, λ

Result: Finds the global minimum for the objective function F (x)

k = 0 ;

t = 1
L

;

repeat

xk+1 := proxλtg
(
xk − t∇f(xk)

)
;

k := k + 1;

until iterate not converged ;

The stopping criteria used for the algorithms is:∣∣∣∣F (xk)− F (xk−1)

F (xk−1)

∣∣∣∣ ≤ ε (3.27)

1. The convergence rate for the algorithm goes as O(1/k). For the complete proof,

please refer to [18].

2. Note that ISTA is a monotonically converging algorithm, i.e. in every step, the

value of the objective function decreases.
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We next have a look at the FISTA algorithm.

3.2.4 The FISTA Algorithm

The FISTA, Fast Iterative Shrinkage and Thresholding Algorithm [18] is a proximal

gradient algorithm , which is used to minimize the functions of the kind similar to those

in ISTA:

F (x) = f(x) + g(x) (3.28)

1. x ∈ Rn, f(x) is a smooth convex function, while the function g(x) is convex but

non-smooth.

2. First derivative of f(x) satisfies a Lipschitz condition with constant L.

3. The FISTA algorithm operates very similar to the ISTA algorithm, but includes an

‘extrapolation’ step, as below:

yk+1 = xk + wk+1(x
k − xk−1) (3.29)

xk+1 = proxλtg(y
k+1 − t∇f(yk+1)); (3.30)

4. In FISTA, the gradient and the proximity operator for g are not applied at the

iterate xk, but at a extrapolated point yk+1, formed by a specific linear combination

of {xk, xk−1}.

5. Note that the parameters wi need to be chosen appropriately to ensure convergence

and obtain good performance.

FISTA pseudo-code

We only consider the FISTA algorithm for a fixed stepsize. For a backtracking variant,

and more information on the standard implementation, please refer to [18]

The stopping criteria for the algorithm is:∣∣∣∣F (xk)− F (xk−1)

F (xk−1)

∣∣∣∣ ≤ ε (3.31)
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Algorithm 2: FISTA with constant stepsize

Data: initial value x0, L, λ

Result: Finds the global minimum for the objective function F (x)

k = 0 ;

t = 1
L

;

u1 = 1 ;

y1 = x0 ;

repeat

k := k + 1;

xk := proxλtg(y
k − t∇f(yk));

uk+1 =
1+
√

1+4(uk)2

2
;

yk+1 = xk +
(
uk−1
uk+1

)
(xk − xk−1)

until iterate not converged ;

1. If the parameters are chosen in the way mentioned above, it can be shown that the

covergence rate for the algorithm is O(1/k2). [18]

2. Also, as opposed to ISTA, FISTA is not a monotonically convergent algorithm. This

implies that, the objective function might not decrease in during every iteration,

but globally it does decrease.

3. Direct application of ISTA and FISTA to reconstruct images has been explored in

literature and the range of λ for good performance has been explored in the dual

degree dissertation by Kedar Tatwawadi, IIT B [10]. Next we present two variants

of an alternating algorithm based on ISTA and FISTA respectively to perform joint

minimization based on Formulation-3.

3.3 ISTA based Alternating Algorithm for Joint Min-

imization

1. The function we wish to minimize with respect to zx and zy is,

F (zx, zy) = ‖ΦxΨzx−bx‖22+‖ΦyΨzy−by‖22+λx‖zx‖1+λy‖zy‖1+µ||fx−fy||22. (3.32)
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2. Let the smooth part of the above function be,

f(zx, zy) = ‖Axzx − bx‖22 + ‖Ayzy − by‖22 + µ||Cxzx − Cyzy||22. (3.33)

3. We will start will initial guesses for zx and zy and will update zx and zy iteratively

alternating between iterations on zx and zy.

4. At the kth iteration on zx we will find the update zk+1
x by treating f(zx, zy) as a

function of zx alone with zy as a constant taking value zky .

5. Let fkx (zx) = f(zx, z
k
y ). Then we update zx as in the ISTA algorithm where the

smooth part now is f(zx) = fkx (zx) and the non differentiable part is g(zx) =

λx‖zx‖1.

zk+1
x := proxλxtxg

(
zkx − tx∇zxf(zkx, z

k
y )
)
, (3.34)

where ∇zxf(zkx, z
k
y ) = ∇zxf

k
x (zkx) based on definition of fkx (zx).

6. At the kth iteration on zy we will find the update zk+1
y by treating f(zx, zy) as a

function of zy alone with zx as a constant taking value zk+1
x .

7. Let fky (zy) = f(zk+1
x , zy). Then we update zy as in the ISTA algorithm where

the smooth part now is f(zy) = fky (zy) and the non differentiable part is g(zy) =

λy‖zy‖1.

zk+1
y := proxλytyg

(
zky − ty∇zyf(zk+1

x , zky )
)
, (3.35)

where ∇zyf(zk+1
x , zky ) = ∇zyf

k
y (zky ) based on definition of fky (zx).

8. Note, that the step size tx and ty are chosen as 1
Lx

and 1
Ly

respectively where Lx

and Ly are the upper bounds on Lipschitz constants for fkx (zx) and fky (zy) over all

k.

9. The parameters λx, λy and µ need to be chosen appropriately, for the algorithm to

converge to desired solution and also be fast enough. If λx is too low then we will

not move away from initial solution and if λx is too high we will converge to the all

zero solution.
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10. If µ is too low we will get similar results as for the case where we solve the mini-

mization problem separately for zx and zy and if µ is too high then we may not get

sparse solutions.

3.3.1 ISTA based alternating algorithm pseudo-code

The pseudo code for the ISTA based alternating algorithm is given below. The stopping

criteria for the algorithm is: ∣∣∣∣∣F (zk+1
x , zk+1

y )− F (zkx, z
k
y )

F (zkx, z
k
y )

∣∣∣∣∣ ≤ ε (3.36)

Algorithm 3: ISTA based alternating algorithm

Data: initial values z0x, z
0
y , Lx, Ly, λx, λy, µ

Result: Finds the global minimum for the objective function F (zx, zy)

k = 0 ;

tx = 1
Lx

;

ty = 1
Ly

;

repeat

zk+1
x := proxλxtxg

(
zkx − tx∇zxf(zkx, z

k
y )
)
;

zk+1
y := proxλytyg

(
zky − ty∇zyf(zk+1

x , zky )
)
;

k := k + 1;

until iterate not converged ;

3.4 FISTA based Alternating Algorithm for Joint

Minimization

1. The FISTA based alternating algorithm is very similar to the ISTA based algorithm

and is used in similar settings.

2. In this variant before updating zx we perform an ‘extrapolation step’ as follows,

qk+1
x = zkx + wk+1(z

k
x − zk−1

x ) (3.37)

zk+1
x = proxλxtxg

(
qk+1
x − tx∇zxf(qk+1

x , zky )
)
. (3.38)
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3. Similarly before updating zy we do the following,

qk+1
y = zky + wk+1(z

k
y − zk−1

y ) (3.39)

zk+1
y = proxλytyg

(
qk+1
y − ty∇zyf(zk+1

x , qk+1
y )

)
. (3.40)

4. Note that the parameters wi need to be chosen appropriately to ensure convergence

and obtain good performance.

3.4.1 FISTA based alternating algorithm pseudo-code

The pseudo code for the FISTA based alternating algorithm is given below. The stopping

criteria for the algorithm is same as in the ISTA variant.

Algorithm 4: FISTA based alternating algorithm

Data: initial values z0x, z
0
y , Lx, Ly, λx, λy, µ

Result: Finds the global minimum for the objective function F (zx, zy)

k = 0 ;

u1 = 1 ;

q1x = z0x ;

q1y = z0y ;

tx = 1
Lx

;

ty = 1
Ly

;

repeat

k := k + 1;

zkx := proxλxtxg
(
qkx − tx∇zxf(qkx, z

k
y )
)
;

zky := proxλytyg
(
qky − ty∇zyf(zk+1

x , qky)
)
;

uk+1 =
1+
√

1+4(uk)2

2
;

qk+1
x = zkx +

(
uk−1
uk+1

)
(zkx − zk−1

x ) ;

qk+1
y = zky +

(
uk−1
uk+1

)
(zky − zk−1

y )

until iterate not converged ;

In the next chapter we use the above algorithms to perform simultaneous recovery

for various classes of images. We compare the performance using the joint reconstruction

with that obtained using independent reconstructions.



Chapter 4

Experiments and Results

4.1 Introduction

In chapter 2 we saw that the problem is to determine the image(i.e intensity distribution)

from an incomplete set of Fourier measurements since we have data available only at

certain points in the Fourier domain, determined by the u − v coverage of the antenna

setup. The performance of our reconstruction algorithm depends both on the intensity

distribution that we wish to recover and the sampling map. Here, sampling map refers

to the points in the Fourier domain where data is available. Such points are referred to

as sampled points or sampling points. In practice this depends on the u − v coverage

of the antenna setup where both u and v can take any real value. In order for the

Fourier relationship to be valid while using fast Fourier transforms, the u− v plane must

correspond to a set of m×n uniformly spaced frequencies. This is achieved by the process

of gridding as discussed in [8]. . We will consider experiments where we wish to recover

two images simultaneously and where we assume that the information overlap is known.

Note that this in general will require registration but in this work we will assume that

registration has been done and concentrate on getting better reconstructions based on

the information overlap between the two images. We will refer to the two images as the

“left” and “right” images or simply as image “x” and image “y”. We conduct three class

of experiments on simulated data:

1. Experiments on images consisting of astronomical point sources that are sparse in

spatial domain.

34
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2. Experiments on the Shepp-Logan phantom, a representative image that is com-

pressible in wavelet domain and used in MRI applications.

3. Experiments on images consisting of both astronomical point and extended sources.

4.2 Experiments on point sources

1. Here we consider images consisting of point sources such as clusters of stars.

2. We consider the problem in Formulation-3 where the objective function that we

wish to minimize is as in Eq. 3.13 repeated here for convenience:

F (zx, zy) = ‖ΦxΨzx− bx‖22 +‖ΦyΨzy− by‖22 +λx‖zx‖1 +λy‖zy‖1 +µ||Bxzx−Byzy||22.

(4.1)

Also since,

x = Ψzx (4.2)

y = Ψzy, (4.3)

and our images are sparse in spatial domain itself we have Ψ = I, the identity

matrix.

3. We will assume that there is an overlap of S pixels between the two reconstructed

images and Bx and By represent the matrices that extract the portions that will

overlap in matching order.

4. Since our image sizes are typical 256 × 256, it is infeasible to store the matrices

Φx,Φy, Bx and By and perform actual matrix multiplication due to their huge sizes.

Instead we use them as operators.

5. Φx and Φy are implemented using the Fast Fourier transform operator. Bx and

By just represent selecting certain portions of the image and rearranging them in

correct order which can also be done without any matrix multiplication.

6. The alternating algorithm requires us to also use the transpose of the above matrices

and thus we also represent ΦT
x ,Φ

T
y , B

T
x and BT

y by operators.
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7. The Lipschitz constants Lx and Ly are determined by differentiating the function

the smooth part of the function F (zx, zy) and applying the definition of the Lipschitz

constant in Eq. 3.24:

Lx = 2 max(eig(ΦT
xΦx)) + 2µmax(eig(BT

xBx)) (4.4)

Ly = 2 max(eig(ΦT
y Φy)) + 2µmax(eig(BT

y By)) (4.5)

This value can be upper bounded by 2(1+µ), where µ is the weight to the coupling

term.

8. The error measure e, we use in all our experiments is the relative error and is given

by

e =
‖xr − x‖F
‖x‖F

, (4.6)

where xr refers to the reconstructed image and x refers to the original image and

‖‖F refers to the Frobenius norm.

We conducted two experiments using the ISTA based alternating algorithm as follows:

Experiment with 33% overlap

1. The two 256 × 256 images consist of 175 stars each with an overlap between the

last 85 columns of the left image with the first 85 columns of the right image. The

stars of size 1 pixel each and have intensity value 1. The star locations are chosen

uniformly at random.
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(a) Left image (b) Right image

Figure 4.1: Original left and right images, 175 stars. The last 85 columns of the left

image overlap with the first 85 columns of the right image.

Figure 4.2: GMRT sampling map for an instant. The white pixels correspond to locations

where Fourier data is available

2. The star locations are picked uniform randomly and the intensity of each star is

chosen uniformly between [0.3, 1]. The two color coded original images are shown

in Fig. 4.1 with the background sky as black and color of stars varying from blue

to red as intensity increases.

3. For both left and right images, Fourier measurements are available as per the GMRT
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(a) Left image (b) Right image

Figure 4.3: Dirty images, 175 stars, 33% overlap, 746 points, rms 1e−4

sampling map for an instant consisting of 746 points as shown in Fig. 4.2. Thus

Φx = Φy.

4. We consider additive white Gaussian noise with a rms value of 1e−4.

5. For the initial guesses for zx and zy we first find the dirty images by performing

a direct Fourier inverse while setting zeros at locations where Fourier data is not

available. We then extract the corresponding zx and zy which in this case are the

images themselves since Ψ = I and use these as starting points. The dirty images

are shown in Fig. 4.3.

6. We choose µ = 0 and µ = 0.01 where in the first case there is no coupling and in the

second case coupling is present. We use λx = λy = λ and vary it in the logarithmic

scale between [-3.75, -2.75] in steps of size 0.25.

7. We terminate the algorithm either when the relative difference in value of objective

function is less than 1e−7 or when we reach 30000 iterations.

8. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.4.
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(a) Left image (b) Right image

Figure 4.4: Error vs λ, 175 stars, 33% overlap, 746 points, rms 1e−4

9. The reconstructed left and right images for λ = 1e−3.25 for the two values of µ

are shown in Fig. 4.11 and Fig. 4.12 respectively. The comparison of the zoomed

regions highlighted by the boxes are with corresponding regions from the original

images are shown in Fig. 4.6 and Fig. 4.8.

(a) Coupled(µ = 0.01) (b) Separate(µ = 0)

Figure 4.5: Reconstructed left images, 175 stars, 33% overlap, 746 points, rms 1e−4,

λ = 1e−3.25
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(a) Coupled(µ = 0.01) (b) Separate(µ = 0) (c) Original

Figure 4.6: Zoomed left image regions, 175 stars, 33% overlap, 746 points, rms 1e−4,

λ = 1e−3.25 The image using separate formulation has extra blue star near the central

red star.

(a) Coupled(µ = 0.01) (b) Separate(µ = 0)

Figure 4.7: Reconstructed right images, 175 stars, 33% overlap, 746 points, rms 1e−4,

λ = 1e−3.25

Observations

1. From Fig. 4.4 we see that the coupled formulation using the alternating algorithm

performs better than than the uncoupled formulation.

2. From Fig. 4.6 and Fig. 4.8 we can see that the reconstructed image in the uncoupled

case has both excess stars and missing stars and the coupled formulation not only



4.2. EXPERIMENTS ON POINT SOURCES 41

(a) Coupled(µ = 0.01) (b) Separate(µ = 0) (c) Original

Figure 4.8: Zoomed right image regions, 175 stars, 33% overlap, 746 points, rms 1e−4,

λ = 1e−3.25. The image using separate formulation has several excess stars.

improves reconstruction in portion of image where overlap occurs but also in regions

where there is no overlap.

3. Note that we have a chosen value of µ = 0.01 heuristically since we want to give

less weightage to the overlap term as compared to the data fitting terms.

4. For the best value of λ for the left image the error improves from approximately

0.26 to 0.14 and for the right image the error improves from approximately 0.20 to

0.125.

5. Since the level of sparsity in both images and the sampling points are the same in

both images both the error and the improvement in error is similar in left and right

images.

Experiment with 50% overlap

1. We repeat the above experiment with same settings except that this time we con-

sider a overlap of 50%.

2. The new original images are shown in Fig. 4.9.

3. The sampling map, noise rms value, the values of µ and values of λ are same as in

the previous experiment.

4. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.10.
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(a) Left image (b) Right image

Figure 4.9: Original left and right images, 175 stars. The last 85 columns of the left

image overlap with the first 128 columns of the right image.

5. The reconstructed left and right images for the best values of λ for the two values

of µ are shown in Fig. 4.11 and Fig. 4.12 respectively.

Observations

1. From Fig. 4.4 and Fig. 4.10 we see that the coupled formulation using the alter-

nating algorithm performs better than than the uncoupled formulation. Also with

(a) Left image (b) Right image

Figure 4.10: Error vs λ, 175 stars, 50% overlap, 746 points, rms 1e−4
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(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−3.25

Figure 4.11: Reconstructed left images, 175 stars, 50% overlap, 746 points, rms 1e−4.

The image using separate formulation has several excess star in the central region.

(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−3.25

Figure 4.12: Reconstructed right images, 175 stars, 50% overlap, 746 points, rms 1e−4.

The image using separate formulation has several excess star in the central region.

50% overlap the coupled formulation does better than the case where there is 33%

overlap. This is to be expected since with more overlap we have more information

and should do better.
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2. For the best value of λ for the left image the error improves from approximately

0.26 to 0.09 and for the right image the error improves from approximately 0.18 to

0.08.

3. Since the level of sparsity in both images and the sampling points are the same in

both images both the error and the improvement in error is similar in left and right

images.

4.3 Experiments on Shepp-Logan phantom

1. In this section we conducted experiments on the Shepp-Logan phantom image, a

representative image that is sparse in wavelet domain.

2. We consider the problem in Formulation-3 where the objective function that we

wish to minimize is as follows:

F (zx, zy) = ‖ΦxΨzx− bx‖22 +‖ΦyΨzy− by‖22 +λx‖zx‖1 +λy‖zy‖1 +µ||Bxzx−Byzy||22.

(4.7)

Also since,

x = Ψzx (4.8)

y = Ψzy, (4.9)

and our images are sparse in wavelet domain we have Ψ represent an inverse wavelet

transform operator.

3. Thus we will first solve for the sparse set of wavelet coefficients and then obtain the

reconstructed images using inverse wavelet transform.

4. Since we deal with image sizes of 256× 256 the maximum number of stages we can

use is log2(256) = 8. Also higher the number of stages we use the better sparse

approximation we obtain. Thus, we use a 7 stage 2D-DWT with a Haar wavelet

to perform the wavelet transform. In the original images there are approximately

2500 significant coefficients.

5. We will assume that there is an overlap of S pixels between the two reconstructed



4.3. EXPERIMENTS ON SHEPP-LOGAN PHANTOM 45

images and Bx and By represent the matrices that take the wavelet coefficients and

apply inverse wavelet transform and then extract the portions that will overlap in

matching order.

6. The sampling is done by taking slices/lines in the Fourier domain that have equal

angular spacing and pass through dc frequency. Thus we have an incomplete set of

Fourier measurements obtained by the sampling matrices Φx and Φy. We will con-

sider different number lines for the left and right image and observe the performance

of the alternating algorithm in this scenario.

7. The Lipschitz constants Lx and Ly are determined as:

Lx = 2 max(eig(ΦT
xΦx)) + 2µmax(eig(BT

xBx)) (4.10)

Ly = 2 max(eig(ΦT
y Φy)) + 2µmax(eig(BT

y By)) (4.11)

This value can be upper bounded by 2(1 + µ).

8. The error measure e, we use in all our experiments is the relative error and is given

by

e =
‖xr − x‖F
‖x‖F

, (4.12)

where xr refers to the reconstructed image and x refers to the original image and

‖‖F refers to the Frobenius norm.

We conducted two experiments using the ISTA based alternating algorithm as follows:

Experiment with 30 and 20 sampling lines

1. The left and right original images of size 256 × 256 images in Fig. 4.13 consist of

the Shepp-Logan phantom with an overlap between the last 128 columns of the left

image with the first 128 columns of the right image.

2. Fourier data is available at locations given by the sampling map which consist of

30 lines (10501 points) and 20 lines (6657 points) respectively for the left and right

image as shown in Fig. 4.14

3. We consider additive white Gaussian noise with a rms value of 1e−4.
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4. For the initial guesses for zx and zy we first find the dirty images by performing

a direct Fourier inverse while setting zeros at locations where Fourier data is not

available. We then extract the corresponding zx and zy which in this case are

the wavelet coefficients corresponding to the dirty image and use these as starting

points. The dirty images are shown in Fig. 4.15.

5. We choose µ = 0, µ = 0.01 and µ = 0.1 where in the first case there is no coupling

and in the latter two cases coupling is present. We use λx = λy = λ and vary it in

the logarithmic scale between [-4, -1] in steps of size 0.5.

6. We terminate the algorithm either when the relative difference in value of objective

function is less than 1e−7 or when we reach 30000 iterations.

7. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.16.

8. The reconstructed left and right images for λ = 1e−3.5 for µ = 0.1 and λ = 1e−2 for

µ = 0 are shown in Fig. 4.17 and Fig. 4.18 respectively.

(a) Left image (b) Right image

Figure 4.13: Original left and right images, Shepp-Logan phantom. The last 128 columns

of the left image overlap with the first 128 columns of the right image.
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(a) Left image (b) Right image

Figure 4.14: Sampling maps, Left 30 lines, Right 20 lines

Observations

1. From the error graphs and the reconstructed images we observe that for both left

and right images the alternating algorithm using the coupled formulation performs

better than the uncoupled formulation

(a) Left image (b) Right image

Figure 4.15: Dirty images, Shepp-Logan phantom, Left 30 lines, Right 20 lines, rms 1e−4



4.3. EXPERIMENTS ON SHEPP-LOGAN PHANTOM 48

(a) Left image (b) Right image

Figure 4.16: Error vs λ, Shepp-Logan phantom, 50% overlap, Left 30 lines, Right 20

lines, rms 1e−4

(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−2

Figure 4.17: Reconstructed left images, Shepp-Logan phantom, 50% overlap, Left 30

lines, Right 20 lines, rms 1e−4

2. For the best value of λ for the left image the error improves from approximately

0.114 to approximately 0.105 by using coupling and for the right image the error

improves from approximately 0.221 to approximately 0.142.

3. For the right image for which we have Fourier data only on 20 sampling lines the

improvement is clearly pronounced.

4. This is because the left image has Fourier data available on 30 sampling lines and
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thus we expect the uncoupled reconstruction of the left image to better than that

of the right image. By introducing the coupling term this is transferred into the

right image also and we get significant improvement in performance.

5. For the left image the improvement by using the coupled formulation is not as

pronounced as that for the right image.

Experiment with 35 and 25 sampling lines

1. We conduct the same experiment as above with the only the sampling maps changed.

2. Fourier data is available at locations given by the sampling map which consist of

35 lines (12170 points) and 25 lines (8808 points) respectively for the left and right

image as shown in Fig. 4.19

3. We choose µ = 0, µ = 0.01 and µ = 0.1 where in the first case there is no coupling

and in the latter two cases coupling is present. We use λx = λy = λ and vary it in

the logarithmic scale between [-4, -2] in steps of size 0.5.

4. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.20.

(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−1.5

Figure 4.18: Reconstructed right images, Shepp-Logan phantom, 50% overlap, Left 30

lines, Right 20 lines, rms 1e−4. The reconstruction using coupled formulation is visually

much better
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5. The reconstructed left and right images for λ = 1e−3.5 for µ = 0.1 and λ = 1e−2 for

µ = 0 are shown in Fig. 4.21 and Fig. 4.22 respectively.

Observations

1. From the error graphs and the reconstructed images we observe that for both left

and right images the alternating algorithm using the coupled formulation performs

better than the uncoupled formulation

2. For the best value of λ for the left image the error improves from approximately

0.081 to 0.071 by using coupling and for the right image the error improves from

approximately 0.152 to 0.094.

3. Again for the right image the improvement is more pronounced than that for the left

image due to the fact that for the left image we have Fourier data on 35 sampling

lines and for the right image we have Fourier data only on 25 sampling lines.

4. Since we expect the higher number of samples for the left image to lead to a better

reconstruction in the uncoupled formulation, this higher quality is transferred to

the right image when we introduce coupling.

(a) Left image (b) Right image

Figure 4.19: Sampling maps, Left 35 lines, Right 25 lines
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(a) Left image (b) Right image

Figure 4.20: Error vs λ, Shepp-Logan phantom, 50% overlap, Left 35 lines, Right 25

lines, rms 1e−4

5. Comparing the relative error graphs in Fig. 4.20 and Fig. 4.16 we observe that the

percentage improvement in the error reduces as data at higher number of Fourier

points is available. This conforms with the intuition that if we have almost all

Fourier measurements, then we expect both the coupled and uncoupled formulation

to perform almost similarly.

6. We will not deal with radio astronomical extended sources separately in this section

(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−2

Figure 4.21: Reconstructed left images, Shepp-Logan phantom, 50% overlap, Left 35

lines, Right 25 lines, rms 1e−4
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(a) Coupled, µ = 0.01, λ = 1e−3.5 (b) Separate, µ = 0, λ = 1e−1.5

Figure 4.22: Reconstructed right images, Shepp-Logan phantom, 50% overlap, Left 35

lines, Right 25 lines, rms 1e−4. The reconstruction using the coupled framework is better

than the other.

but instead will combine the extended sources with point sources and investigate

them in the next section.

4.4 Experiments on images containing both point

and extended sources

1. In this section we consider images that consist of both point and extended sources.

It is unlikely to find a region of the sky with extended sources alone and most likely

we will find extended sources along with point sources in the background. In this

case our image will not be sparse in any one domain and we must come up with an

alternate formulation to reconstruct such images from incomplete fourier data.

2. Let J be the image containing both point sources and extended sources. We can

view J as the sum of two images Js and Jw where, Js refers to the image of point

source and is sparse in spatial domain and Jw refers to image containing the ex-

tended source and is sparse in wavelet domain. An example of such a decomposition

is given in Fig. 4.23.
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3. We have,

Jw = Wu (4.13)

Js = Iv, (4.14)

where u denotes the wavelet coefficients, v denotes the pixel values, W refers to

the matrix representing the inverse wavelet transform and I refers to the identity

matrix.

4. Thus we have,

J = Wu+ Iv. (4.15)

5. Now let us consider a setting as before where we have two images with some infor-

mation overlap. Let the lexicographic ordering of the left image be denoted by x of

size N × 1 and that of the right image by denoted by y of size N × 1. Then,

x = Wux + Ivx (4.16)

y = Wuy + Ivy (4.17)

6. We have Fourier measurements bx and by using the sampling matrices Φx and Φy

(a) Complete image (b) Spatial domain sparse (c) Wavelet sparse

Figure 4.23: Decomposition of image containing both point and extended sources
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where,

bx = Φxx+ nx (4.18)

by = Φyy + ny, (4.19)

where Φx and Φy are Mx×N and My ×N measurement matrices respectivley and

nx and ny are terms corresponding to the noise added to the system while obtaining

the measurements (Mx < N, My < N).

7. Let fx and fy be the S × 1 feature vectors obtained from x and y as,

fx = Bxux + Cxvx (4.20)

fy = Byuy + Cyvy, (4.21)

where Bx, By, Cx and Cy are feature extraction matrices.

8. Then along the lines of Formulation-3 we will find u∗x, v
∗
x, u

∗
yandv

∗
y by performing

joint minimization of the cost function G(ux, vx, uy, vy) as follows:

u∗x, v
∗
x, u

∗
y, v

∗
y = arg min

ux,vx,uy ,vy
G(ux, vx, uy, vy) (4.22)

where,

G(ux, vx, uy, vy) ≡ ‖ΦxΨux + Φvx − bx‖22 + ‖ΦyΨuy + Φvy − by‖22 + λsx‖ux‖1 + λwx ‖vx‖1

+λsy‖uy‖1 + λwy ‖vy‖1 + µ||fx − fy||22. (4.23)

9. Here λsx and λsy are weights to the spatial domain sparse component of the recon-

structed image while λwx and λwy are weights to the wavelet domain sparse compo-

nent. In general these can be different since we may have a different level of sparsity

in the two domains.

10. We will make the simplifying assumption and choose λsx = λwx = λx and λsy = λwy =

λy.

11. Under this assumption we can express the above minimization problem using Formulation-
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3 where,

zx =

ux
vx

 (4.24)

zy =

uy
vy

 (4.25)

Ax =
[
ΦxΨ Φx

]
(4.26)

Ay =
[
ΦyΨ Φy

]
(4.27)

Dx =

Bx 0

0 Cx

 (4.28)

Dy =

By 0

0 Cy

 (4.29)

12. Thus we will first find z∗x and z∗y by solving the joint minimization problem,

z∗x, z
∗
y = arg min

zx,zy
F (zx, zy), (4.30)

where,

F (zx, zy) ≡ ‖Axzx − bx‖22 + ‖Ayzy − by‖22 + λx‖zx‖1 + λy‖zy‖1 + µ||Dxzx −Dyzy||22.

(4.31)

We conduct three classes of experiments with this formulation,

1. Experiment to confirm the need of a better description for images consisting of both

point and extended sources

2. Images consisting of both the Shepp-Logan phantom and point sources. The Shepp-

Logan phantom is a prime example of a wavelet sparse image and hence we use this

to test our framework.

3. Images consisting of both astronomical point sources and astronomical extended

sources.
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Figure 4.24: Original image, Shepp-Logan phantom, 100 stars

4.4.1 Experiment to confirm need for better description

1. In this experiment we will consider a single image reconstruction problem where

the image consists of a spatial domain sparse component and a wavelet domain

sprase component. We will perform the reconstruction using both the formulation

presented above and a formulation that considers the image only to be wavelet

sparse. In both cases we will make use of the FISTA algorithm to perform the

reconstruction. It is clear that a formulation that considers the image to be sparse

in spatial domain will certainly not work so we don’t consider that case.

2. We construct the original image by adding 100 stars at random locations in the

background of the Shepp-Logan phantom image as shown in Fig. 4.24. Each star

is of size 2× 2 pixels and has uniform intensity value of 1.

3. We have Fourier data according to the sampling map consisting of 35 sampling lines

(12170 points points) as shown in Fig. 4.25.

4. We assume that there is no noise.

5. The Lipschitz constants L is determined as:

L = 2 max(eig(ATA) (4.32)

This value can be upper bounded by 4.

6. The value of λ is varied in the logarithmic scale between [-4, 0] in steps of 0.5.
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Figure 4.25: Sampling map, 35 lines

7. From the dirty image (Fig. 4.26) it is not easy to recover the coefficients of the

wavelet domain sparse and spatial domain sparse component. But since our algo-

rithm is insensitive to starting point we initialize both sets of coefficients with the

corresponding coefficients derived from the combined image.

8. The error vs λ plot for the two formulations is shown in Fig. 4.27.

9. The reconstructed image for the best value of λ using the formulation presented

above and the formulation that assumes the image to be sparse in wavelet domain

alone is shown in Fig. 4.28.

10. The spatial domain sparse component and the wavelet domain sparse component

of the reconstruction using the new formulation is shown in Fig. 4.29.

Figure 4.26: Dirty image, Shepp-Logan phantom, 100 stars, 35 lines
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Figure 4.27: Error vs λ, Shepp-Logan phantom, 100 stars, 35 lines

Observations

1. The formulation that assumes the image to be only wavelet sparse performs much

worse than the formulation that considers the image to have both a spatial domain

sparse component and a wavelet domain sparse component.

2. The spatial domain sparse component of the reconstructed image consists of not

only the point sources but also parts of the edges of the Shepp-Logan phantom. This

(a) Sum of wavelet sparse and spatial do-

main sparse, λ = 1e−2

(b) Wavelet domain sparse only, λ = 1e−2

Figure 4.28: Reconstructed images, Shepp-Logan phantom, 100 stars. The reconstruction

of the phantom is better in the left image
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(a) Spatial domain sparse (b) Wavelet domain sparse

Figure 4.29: Reconstructed image decompositions, Shepp-Logan phantom, 100 stars,

λ = 1e−2

is to be expected since the edges have high contribution to the wavelet coefficients

in the wavelet domain sparse image.

3. The wavelet domain sparse component contains the Shepp-Logan phantom and also

a few stray stars.

4. Thus we need the formulation presented above to tackle images that contain both

a spatial domain sparse component and a wavelet domain sparse component.

4.4.2 Experiments on images of Shepp-Logan phantom along

with stars

In this section we will use the formulation above to reconstruct left and right images where

there is information overlap between the two images. We compare the performance of

the cases where we do joint minimization using the alternating algorithms with the case

where we solve for left and right images separately. By decomposing the image into two

components (a wavelet domain sparse component and a spatial domain sparse component)

we are effectively increasing the size of the problem by a factor of 2 and to obtain faster

run times we use the FISTA variant of the alternating algorithm.
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Experiment with 40 sampling lines for both images

1. The left image is constructed as follows. We start with the Shepp-Logan phantom

and add 200 stars at random locations in the background. Each star is of size 2× 2

pixels and has intensity value of 1.

2. For the right image, we start with the same Shepp-Logan phantom image and add

200 stars in different random locations as compared to the left image. The two

original images are shown in Fig. 4.30.

3. Thus the two images can be viewed as having a common wavelet sparse component

and different spatial domain sparse components.

4. Fourier data is available at locations given by the sampling map which consist of

40 lines (13387 points) for voth the left and right image as shown in Fig. 4.31

5. We consider the noiseless case. The information overlap present is that the wavelet

sparse component of both images must be the same. Thus in Eq. 4.21, we have,

Bx = W,Cx = 0, By = W and Cy = 0 where W is the inverse wavelet transform

operator.

6. From the dirty images (Fig. 4.32) it is not easy to recover the coefficients of the

(a) Left image (b) Right image

Figure 4.30: Original images, Shepp-Logan phantom, 200 stars. Only the star locations

in both images are different
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Figure 4.31: Sampling map, 40 lines

wavelet domain sparse and spatial domain sparse component. But since our algo-

rithm is insensitive to starting point we initialize both sets of coefficients with the

corresponding coefficients derived from the combined images.

7. We choose µ = 0 and µ = 0.1 where in the first case there is no coupling and in the

latter case coupling is present. We use λx = λy = λ and vary it in the logarithmic

scale between [-5.5, -3] in steps of size 0.5.

8. The Lipschitz constant in this case can be upper bounded by 2(2 + µ).

9. We terminate the algorithm either when the relative difference in value of objective

(a) Left image (b) Right image

Figure 4.32: Dirty images, Shepp-Logan phantom, 200 stars, 40 lines
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function is less than 1e−7 or when we reach 20000 iterations.

10. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.33.

(a) Left image (b) Right image

Figure 4.33: Error vs λ, Shepp-Logan phantom, 200 stars, 40 lines]

11. The reconstructed left and right images for λ = 1e−5 for µ = 0.1 and λ = 1e−5 for

µ = 0 are shown in Fig. 4.34 and Fig. 4.35 respectively.

(a) Coupled, µ = 0.1, λ = 1e−5 (b) Separate, µ = 0, λ = 1e−5

Figure 4.34: Reconstructed left images, Shepp-Logan phantom, 200 stars, 40 lines. The

reconstruction of the phantom is visibly better in the coupled formulation.
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(a) Coupled, µ = 0.1, λ = 1e−5 (b) Separate, µ = 0, λ = 1e−5

Figure 4.35: Reconstructed right images, Shepp-Logan phantom, 200 stars, 40 lines. The

reconstruction of the phantom is visibly better in the coupled formulation.

Observations

1. From the error graphs and the reconstructed images we observe that for both left

and right images the alternating algorithm using the coupled formulation performs

better than the uncoupled formulation

2. For the best value of λ for the left image the error improves from approximately

0.102 to 0.056 by using coupling and for the right image the error improves from

approximately 0.105 to 0.056.

3. Since the level of sparsity in both images and the sampling points are the same in

both images both the error and the improvement in error are similar in left and

right images.

We also performed the experiment where the sampling map for the left image consisted

of 40 sampling lines and that of the right image consisted of 30 sampling lines. In this

case, we observed that the improvement in the reconstruction of the right image which has

fewer number of sampling points is much higher than that in the reconstruction of the left

image. This is due to the fact that for the right image, the uncoupled formulation performs

much worse as compared to for the left image since it has Fourier data available at much

fewer points. In the next section, we will consider images of extended astronomical sources



4.4. EXPERIMENTS ON IMAGES CONTAINING BOTH POINT AND EXTENDED
SOURCES 64

along with point sources and conduct experiments to investigate the performance using

the coupled formulation.

4.4.3 Experiment on images containing astronomical extended

and point sources

In this section we will explore the case where a large difference in the number of sampling

points present in the left and right images may lead to loss in performance in the image

with the higher number of samples while using the coupled framework. We will refer to

this problem as the “difference in sampling points problem” and will subsequently present

3 different ways to tackle this problem.

1. The original left and right images shown in Fig. 4.36 and consist of an extended

source along with 200 stars. There is an overlap of 128 columns between the two

images.

2. The stars are of size 2× 2 and have intensity values in range [0.3, 1] picked uniform

randomly.

3. Fourier data is available at the sampling maps generated by the GMRT array using

aperture synthesis as shown in Fig. 4.37.

4. For the left image, we consider sampling map generated by aperture synthesis for

12 hours with a sample collected every 10 minutes.

5. For the left image, we consider sampling map generated by aperture synthesis for

12 hours with a sample collected every 30 minutes.

6. There is a large difference in the number of points in the sampling map of the left

and right images. The left sampling map has 23884 points while the right sampling

map has 11192.

7. The extended source forms the wavelet sparse component (approx. 3700 significant

coefficients) of our image and the stars form the spatial domain sparse component.

A coefficient is said to be significant if it is more than 0.5% of maximum coefficient

value.
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(a) Left image (b) Right image

Figure 4.36: Original images, Extended source , 200 stars. Overlap of 128 columns

(a) Left image, Sampling period = 10 min (b) Right image, Sampling period = 30 min

Figure 4.37: Sampling maps, Duration = 12h

8. The information overlap that we assume is that the last 128 columns of the wavelet

sparse component of the left image match with the first 128 columns of the wavelet

sparse component of the right image.

9. We could in general assume overlap for the spatial domain sparse components too

but we do not consider this.

10. We consider the noiseless case. We initialize both sets of coefficients with the

corresponding coefficients derived from the dirty images shown in Fig. 4.38.
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(a) Left image, Sampling period = 10 min (b) Right image, Sampling period = 30 min

Figure 4.38: Dirty images, Extended source , 200 stars, Duration 12h

11. We choose µ = 0 and µ = 0.1 where in the first case there is no coupling and in the

latter case coupling is present. We use λx = λy = λ and vary it in the logarithmic

scale between [-6, -2] in steps of size 0.5.

12. The Lipschitz constant in this case can be upper bounded by 2(2 + µ).

13. We terminate the algorithm either when the relative difference in value of objective

function is less than 1e−7 or when we reach 20000 iterations.

14. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.39.

15. The reconstructed left and right images for λ = 1e−5 for µ = 0.1 and λ = 1e−5 for

µ = 0 are shown in Fig. 4.40 and Fig. 4.41 respectively.
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(a) Left image (b) Right image

Figure 4.39: Error vs λ, Extended source, 200 stars, Duration = 12h, Left sampling

period = 10 min, Right sampling period = 30 min

(a) Coupled, µ = 0.1, λ = 1e−3 (b) Separate, µ = 0, λ = 1e−3

Figure 4.40: Left reconstructed images, Extended source, 200 stars, Duration = 12h, Left

sampling period = 10 min, Right sampling period = 30 min
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(a) Coupled, µ = 0.1, λ = 1e−3 (b) Separate, µ = 0, λ = 1e−2

Figure 4.41: Right reconstructed images, Extended source, 200 stars, Duration = 12h,

Left sampling period = 10 min, Right sampling period = 30 min. The reconstructed

image using the separate formulation has excess stars in bottom right. The features in

the left of the extended sources are clearer in the image using coupled formulation.

Observations

1. For the left image, the performance deteriorates by using the coupled formulation

while for the right image the performance improves.

2. For the best value of λ for the left image the error increases from approximately

0.048 to 0.049 by using coupling and for the right image the error decreases from

approximately 0.129 to 0.078.

3. This is caused by the large difference in number of points in the sampling map for

the left and right image combined with the presence of the coupling term.

4. Though the increase in error in the reconstruction of the left image is small we can

solve this problem in three ways:

(a) Decrease the value of µ. This will decrease the weight given to the coupling

term to the objective function in (4.23) and will lead to a reconstruction for

the left image largely dominated by the data fitting terms and the l1 norm

regularizer term.
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(b) We can first solve for the left image independently. Then we can reconstruct

the right image using the coupled framework but running iterations only on

zy while treating zx as a constant derived from the reconstructed left image.

In this case the error in the reconstruction of the left image will be similar in

both cases but that of the right image will decrease.

(c) We can decrease the reconstruction error in both the left and right images by

implementing a heuristic presented next.

4.4.4 Heuristic solution to difference in sampling points prob-

lem

From (4.23), we observe that in the smooth part f(z) of the objective function that we

are minimizing, we have the term µ||Dxzx − Dyzy||22. During an iteration on zx, The

proximal operator when applied to this term causes the solution to move towards a value

determined by the current estimate of zy. Since we have more number of samples for

the left image as compared to the right image we have better initial estimates for zx

the difference ||zky − zy||2 is more likely to be much larger than the difference between

||zkx − z∗x||2. Thus zkx is in some sense more “correct” than zky .

We implement the heuristic where we use different values µx and µy while performing

the iteration on zx and zy respectively with µx < µy. The intuition behind this is while

running the kth iteration to determine zky we are pushing it more strongly towards a value

determined by zkx through the coupling term than we push zkx to a value determined by

zk−1
y .

4.4.5 Experiment with heuristic

1. The original left and right images shown in Fig. 4.42 and consist of an extended

source along with 200 stars. There is an overlap of 128 columns between the two

images.

2. The stars are of size 2× 2 and have intensity values in range [0.3, 1] picked uniform

randomly.

3. We use the same sampling maps as in the previous experiment.
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(a) Left image (b) Right image

Figure 4.42: Original images, Extended source , 200 stars. Overlap of 128 columns

4. The information overlap that we assume is that the last 128 columns of the wavelet

sparse component of the left image match with the first 128 columns of the wavelet

sparse component of the right image.

5. We consider the noiseless case. We initialize both sets of coefficients with the

corresponding coefficients derived from the dirty images shown in Fig. 4.43.

(a) Left image, Sampling period = 10 min (b) Right image, Sampling period = 30 min

Figure 4.43: Dirty images, Extended source , 200 stars, Duration 12h

6. For the coupled case we use µx = 0.001 and µy = 0.1. We also consider the

uncoupled case where µx = µy = 0. We use λx = λy = λ and vary it in the
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logarithmic scale between [-6, -2] in steps of size 0.5.

7. The Lipschitz constant in this case can be upper bounded by 2(2 + µ).

8. We terminate the algorithm either when the relative difference in value of objective

function is less than 1e−7 or when we reach 20000 iterations.

9. The relative error vs. λ graphs for the left and right images are shown in Fig. 4.44.

(a) Left image (b) Right image

Figure 4.44: Error vs λ, Extended source, 200 stars, Duration = 12h, Left sampling

period = 10 min, Right sampling period = 30 min

10. The reconstructed left and right images for λ = 1e−5 for the coupled case and

λ = 1e−5 for the uncoupled case are shown in Fig. 4.45 and Fig. 4.46 respectively.
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(a) Coupled, µx = 0.001, µy = 0.1, λ =

1e−5

(b) Separate, µx = 0, µy = 0, λ = 1e−3

Figure 4.45: Left reconstructed images, Extended source, 200 stars, Duration = 12h, Left

sampling period = 10 min, Right sampling period = 30 min

(a) Coupled, µx = 0.001, µy = 0.1, λ =

1e−5

(b) Separate, µx = 0, µy = 0, λ = 1e−2

Figure 4.46: Right reconstructed images, Extended source, 200 stars, Duration = 12h,

Left sampling period = 10 min, Right sampling period = 30 min. The reconstructed image

using coupled formulation has sharper features in the top and right of the extended source

while the one using separate formulation has excess stars in the right.
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Observations

1. For both left and right images the performance improves while using the coupled

framework.

2. For the best value of λ for the left image the error decreases from approximately

0.049 to 0.046 by using coupling and for the right image the error decreases from

approximately 0.130 to 0.075.

3. Thus compared to the previous experiment we have higher error reduction both in

the left and right images.

In the next section we present an explanation for the improvement in performance

observed while using the joint formulation.

4.5 Explanation for Performance Improvement

To understand the reason for performance improvement while using the joint formulation

that performs simultaneous recovery we will first understand the simpler case in which

we recover one image where part of the image is completely known. We formulate this

problem mathematically,

Let N be the length of the vector representing the lexicographic ordering of the image x.

Let M be the number of Fourier measurements y, obtained using the sampling matrix Φ

as y = Φx. We consider the noiseless case.

Let xk represent the portion of the image that is completely known and let S be the

length of the corresponding lexicographic ordering.

Let xu represent the portion of the image that is unknown and must be recovered using

the Fourier measurements. Let x have a sparse representation in the basis Ψ as, x = Ψz,

where k is the number of non-zero coefficients in z.

Let xu have a sparse representation in possibly another basis Ψu as, xu = Ψuzu and let

ku be the number of non-zero coefficients in zu. We will investigate whether ku < k and

explain why there is improvement in performance if this is indeed true.

First let us assume that indeed ku < k. From compressed sensing theory, [6], we require

M = Ck log(N
k

) for recovering the complete image exactly x from the Fourier measure-

ments y, where C is a constant. Since in most cases that we deal with we do not have
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sufficient observations for exact recovery, the higher the number of observations we have,

better is the recovery. Now for recovering the unknown portion of the image xu we re-

quire only Mu = Cku log( N
ku

) measurements and for n large Mu < M . Thus with the

same number of observations M we are able to perform better as the number of non-zero

coefficients in the sparse representation of the solution has decreased.

Next we investigate if indeed ku < k. In the case where the image x consists of point

sources then this is clearly true since the image is sparse in spatial domain itself and

the number of point sources in the unknown portion of the image will be less than the

number of point sources in the complete image. Here we have assumed that the point

sources are distributed over the whole region of the complete image and that the known

portion of the image contains some point sources.

In the case where the image x consists of extended sources then it is sparse in the wavelet

domain. We expect the unknown portion of the image xu also to be sparse in the wavelet

domain and have fewer number of non-zero coefficients in the sparse representation. We

perform two experiments to investigate if this indeed happens,

4.5.1 Experiment on Yale face database

We conduct the experiment on the Yale face database [20] to see if a portion of the im-

age has a sparse representation in the wavelet domain with fewer non-zero coefficients

as compared to the whole image. Face images are also wavelet domain sparse and a

database of face images is easily available so we conduct the experiment on these images

first. We expect the results of this experiment to match with those conducted on images

of extended sources. We use the 3 stage Haar wavelet filter for the wavelet transform

since higher number of stages does not lead to better sparse representations while lower

number of stages does not lead to sparse approximation. We sparsify the image x to

obtain the sparse approximation xs as follows. We first take the wavelet transform of

x and retain only k highest coefficients and then take the inverse wavelet transform to

obtain the sparse approximation xs. Here k is the smallest number that leads to a relative

error between xs and x of less than the specified error threshold δ. We choose δ values

of 0.001, 0.005, 0.01 and 0.05. We consider overlap percentage values of [30, 40, 50, 60,

70]. These values are chosen so that in both portions of the image (known and unknown)

have some part of the face. To compare with the original we also consider the overlap
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percentage of 0.

Let the image x be of size m×n. To simulate the scenario that occurs in our previous

experiments we assume a certain overlap percentage (say 10 %). This means that the last

0.1n columns of x are completely known and we wish to find the sparse representation of

only the first 0.9n columns of x. We sparsify this using the technique mentioned above and

do this for all 164 images in the database and present the results averaged over all images.

The plot of number of coefficients in sparse approximation vs overlap percentage is

shown in Fig. 4.47 and the plot of the percentage decrease in number of coefficients is

shown in Fig. 4.48.

We observe that as overlap percentage increases, we are computing sparse approxima-

tion of smaller portion of images and this leads to corresponding decrease in number of

coefficients in the sparse approximation. From Fig. 4.48 we observe that the percentage

decrease is almost same for the error values of 0.001, 0.005 and 0.01 for a given overlap

percentage. For the error value of 0.05 there is a visible degradation in the quality of the

Figure 4.47: Number of coefficients vs overlap percentage. As the overlap percentage

increases we find sparse approximation of smaller portions of the original images and

number of coefficients required decreases.
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Figure 4.48: Percentage decrease in number of coefficients vs overlap percentage. As

the overlap percentage increases we find sparse approximation of smaller portions of

the original images and number of coefficients required decreases. Thus the percentage

decrease in number of coefficients increases.

sparse approximation and the result is not interesting.

4.5.2 Experiment on astronomical extended sources

We repeat the above experiment on 30 images of astronomical extended sources obtained

from various sources on the internet. We conduct the experiment for error threshold

values of 0.001, 0.005 and 0.01. We consider overlap percentage values of [30, 40, 50, 60,

70]. These values are chosen so that in both portions of the image (known and unknown)

have some part of the extended source. To compare with the original we also consider

the overlap percentage of 0.

The plot of number of coefficients in sparse approximation vs overlap percentage is

shown in Fig. 4.49 and the plot of the percentage decrease in number of coefficients is

shown in Fig. 4.50.

We observe similar results to those obtained on the Yale face database. As overlap

percentage increases, we are computing sparse approximation of smaller portion of images

and this leads to corresponding decrease in number of coefficients in the sparse approx-

imation. From Fig. 4.50 we observe that the percentage decrease is almost same for all
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Figure 4.49: Number of coefficients vs overlap percentage. As the overlap percentage

increases we find sparse approximation of smaller portions of the original images and

number of coefficients required decreases.

Figure 4.50: Percentage decrease in number of coefficients vs overlap percentage. As

the overlap percentage increases we find sparse approximation of smaller portions of

the original images and number of coefficients required decreases. Thus the percentage

decrease in number of coefficients increases.
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the error values for a given overlap percentage.

Thus from the above experiments we can conclude that even in the case of images of

extended sources a portion of the image requires fewer non-zero coefficients in its sparse

representation as compare to the original image (i.e ku < k). Thus for both images of

point sources and those of extended sources we observe that if some portion of the image

is known then the remaining portion of the image can be represented with fewer number

of non-zero coefficients in its sparse representation. Although in our algorithm that does

simultaneous recovery some portion of the image is not completely known, we expect a

better reconstruction in the overlapping region as compared to the case when we solve for

the images separately since that portion is common in both images. This in turn leads

to better reconstruction of the whole images similar to the scenario where some portion

of the image is completely known.

In the next section we present the conclusions drawn from the above experiments and

the scope for future work.



Chapter 5

Conclusion and Further Work

5.1 Conclusion

Based on the results and observations from the experiments conducted we conclude the

following:

1. When we have incomplete Fourier measurements of two images that are sparse in

some domain, and we have “information overlap” present between the two images,

we presented a coupled framework that performs joint minimization to recover both

images simultaneously.

2. To perform the reconstruction we presented two variants of the alternating algo-

rithm inspired by the ISTA and FISTA algorithm respectively.

3. We consider images that are sparse in spatial domain, images that are sparse in

wavelet domain, and images that have both spatial domain sparse component and

wavelet domain sparse components.

4. We compared the performance using the coupled framework with that while using

the uncoupled framework on all classes of images and observed that the coupled

framework that performs joint minimization to simultaneously solve for left and

right images using the alternating algorithm performs better than the uncoupled

framework that solves for each image independently.

5. While performing reconstruction in the coupled framework, we are making use of

the information overlap present in the two images which is not done while using

79
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the uncoupled framework.

6. In the scenario where the left and right images have different number of Fourier

measurements available then while using the coupled framework the improvement

in the image having lower number of measurements is much higher than the im-

provement in the one having higher number of measurements.

7. If the difference in the number of such measurements available is too large then the

reconstruction of the image with higher number of measurements may actually de-

teriorate. We presented a heuristic to tackle this problem and achieve improvement

in reconstruction error even in this case.

8. We focused on mainly astronomical images but this framework may also work on

medical images as suggested by the performance on the Shepp-Logan phantom.

5.2 Further Work

In this project, we presented an alternating algorithm for simultaneous recovery of mul-

tiple images from incomplete Fourier data when there is an information overlap present

between the two images. There are several issues that are left unaddressed and can be

looked at in the future.

1. Alternating algorithm parameters and convergence

The alternating algorithm requires us to choose the parameters λx, λy and µ ap-

propriately to obtain good performance. We chose these parameters by performing

a range search along with a few heuristics. A theoretical approach to determine the

parameters that give good performance is desirable. We have proofs of convergence

of the ISTA and FISTA algorithm that the alternating algorithm is based on. Based

on the ideas in these proofs, proof of convergence for the alternating algorithm can

be derived. For the formulation where image is treated as sum of wavelet sparse

and spatial domain sparse components we have given equal weight to the wavelet

coefficients and pixel values by choosing λsx = λwx . This assumption can be relaxed

to give different weights to the two sets of coefficients.

2. Comparing performance with existing algorithms

As discussed previously, our formulation reduces to the formulation JSM-1 in [15]
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when the two images are the sum of a common sparse component along with dif-

ferent sparse innovations, but with a subtle difference. The performance of our

alternating algorithm can be compared against the algorithm mentioned in [15] to

investigate if there is any improvement.

3. Other classes of images

We restricted our attention to images of astronomical sources and the Shepp-Logan

phantom. But our framework can also be used for other classes of images such as

medical images where the image is sparse in some domain and we have an incomplete

set of Fourier measurements.
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