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Abstract—We consider the stabilization of a linear control
system with multiplicative observation noise. Linear strategies
have been proven to be ineffective in this system, and non-linear
strategies can unboundedly outperform the best linear strategies.
The current best-known control strategy is hand-crafted and far
from optimal.

In this paper, we use neural-network-based controllers to
narrow the gap between the achievability and the converse for
this problem. We propose a periodic controller structure and a
greedy training procedure. This enables us to train our controller
on a finite horizon problem but learn strategies that outperform
the best-known hand-crafted strategy and also generalize, i.e.,
provide stabilizing control at times beyond the training horizon.
Further, we show that for our periodic approach, the learned
strategies display a piecewise linear structure and are well
approximated by interpretable functions.

Index Terms—stochastic control, multiplicative noise, neural
networks, stability

I. INTRODUCTION

Simple control systems have been long studied in order
to develop an understanding of the fundamental trade-offs
involved in communication and control. In 1968 Witsenhausen
proposed the Witsenhausen Counterexample [1], where non-
linear control strategies could unboundedly outperform linear
control strategies [2]. Recent work that used an information-
theoretic lens allowed for major insight into the problem and
progress towards finding the optimal control strategy (which
is still open) [3]–[5]. This progress and insight was preceded
by computational studies that examined how various strategies
performed on the counterexample; in particular, the strategy
of “slopey/soft quantization” that played a role in a provably
good strategy in [3] was related to a strategy discovered by
Baglietto et al. [6], who used neural networks to find good
strategies for the counterexample. Recent work [7] showed
that using neural networks for learning control strategies is
not a straightforward task and choosing an architecture that
favors certain structured strategies is required to escape local
minimas that exist due to the non-convex nature of the multi-
step control problem.

This paper studies a linear control system:

Xn+1 = aXn − Un (1)
Yn = ZnXn. (2)

Here, Xn is the state of the system. The controller may choose
the control Un based on an observation (Yn) that is corrupted

by multiplicative noise (Zn ∼ N (0, 1)). This system has been
studied before in [8], [9]. The results in [9] provide both an
upper and lower bound of the largest a for which this system
can be stabilized in a second-moment sense. However, the gap
between the bounds is significant, and we believe this is likely
due to both of the bounds being loose.

It is notable that the optimal linear strategy for this system
is Un = 0 for all n, however non-linear strategies can
significantly (and unboundedly) improve on the performance
of the linear strategy [9]. A key observation in [9] was that
using the controller’s memory, i.e. at time n using not only
the value of Yn but also the values of Yn−1, Yn−2, etc. to
generate Un, improved the controller performance.

In this paper, we build on this idea and use neural net-
works and use the memory of multiple observations to design
controllers for this seemingly simple but still-open control
problem. We cannot solve this problem using dynamic pro-
gramming for Markov Decision Processes using the belief state
space because we cannot compute the required conditional
expectations. We use a periodic control structure and a greedy
training procedure coupled with input-output scaling across
time. We train our control strategy for a finite-training-horizon,
and are able to learn control strategies that generalize to time-
horizon well beyond the finite-training-horizon. The learned
strategies are well-structured, partly because of our choice
of control structure and training procedure. We find we can
interpret these strategies in terms of simple features. Finally,
we compare strategies across a variety of different parameters
and see that while increase in controller memory does benefit
the controller performance, there are diminishing returns.

II. RELATED WORK

Our problem formulation builds on many previous ideas in
information theory and control that have been discussed in
depth in books such as [10]–[12]. Our specific formulation is
inspired by the data-rate theorems [13]–[15] as well as the
intermittent Kalman Filtering setup [16]; and this formulation
was previously discussed in [8], [9]. Additionally, we are
inspired by previous works that have studied multiplicative
noise including [17]–[21]. Xiao et al. [22] and Xu et al. [23]
also consider related problems but effectively restrict their
attention to LTI strategies, which are not useful in our problem.

Neural networks have been widely used in the past for
system identification as well as to learn good control strate-



gies [24], [25]. There has been significant investigation into
the use of modular networks for learning to control dynamical
systems [26], [27]. More recently in [28], recurrent neural
network based architectures have been used for learning feed-
back codes in communication system leveraging the noisy
feedback from the system. The neural network based feedback
codes outperform the best hand-crafted schemes. These works
have shown that structured networks can improve training and
the overall performance. Our current paper builds on these
older results, and our focus is on using neural-network-based
strategies to provide new interpretable controls.

III. PROBLEM FORMULATION

We consider the discrete time system Sa, with initial state
X0 ∼ N (0, 1), as given in (1) and (2). At time n, the
system state is Xn. A controller observes this state over a
multiplicative channel, i.e., Yn = ZnXn. We think of Zn
as multiplicative noise. The Zn’s are drawn i.i.d. from a
known distribution, however their realizations are unknown
to the controller. We focus on Zn ∼ N (0, 1) in this paper,
but the ideas generalize. The controller can determine the
control at time n, Un, as a function of the current and past
observations, Y0, Y1, . . . , Yn, i.e. Un = πn(Y0, Y1, . . . , Yn)
where πn : Rn → R is the control strategy at time n. We
assume a ∈ R+ is fixed and known, and our goal is second-
moment stability.

Definition 1. The system Sa is stable in second-moment sense
if supn E

[
|Xn|2

]
<∞.

We are interested in the question: what is the largest a for
which we can stabilize the system in a second-moment sense?

Our goal is to try and close the gap between the achievability
and the converse observed in [9]. For simplicity, we focus on
the case where a = 1, and consider the decay factor of the
related system S given as:

Xn+1 = Xn − Un, (3)
Yn = ZnXn. (4)

For this system, we define the minimum decay factor as below.

Definition 2. The minimum decay factor of S is given as:

d∗ = lim sup
n→∞

inf
π0,π1,...,πn

(
E[|Xn|2]
E[|X0|2]

) 1
2n

.

Theorem 1 relates the minimum decay factor of system
S to the maximum growth factor that can be stabilized for
the system Sa. A proof is provided for completeness in
Appendix A.

Theorem 1. Let d∗ denote the minimum decay factor for the
system S. The system Sa can be stabilized for all a < a∗ and
cannot be stabilized for any a > a∗ where a∗ = 1/d∗.

Note that smaller decay factors correspond to a faster
rate of decay of the second moment of the state, Xn, and
better performance of the control strategy. We define a few
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Fig. 1. Average second moment vs time for neural-network-based control
strategies with memory 2, 3 and 4 and the previous best known strategy (PBS).
The memory-2 strategy M2-P2-G2 outperforms the PBS. As we increase M
we can achieve faster decay. The gap in the performance for memory-2 and
memory-3 strategies is much larger than that between memory-3 and memory-
4 strategies.

parameters for our control strategy below. First, we say that a
strategy uses memory M if it uses the values of observations
Yn, Yn−1, . . . , Yn−M+1 to determine control action Un. So a
memory-1 controller can use only the current observation.
Next, we allow the system to periodically cycle through
different neural networks as controllers. The parameter P
denotes the number of distinct controllers we can use. The
value of n (mod P ) is used to determine the controller that
outputs control action at time n.

We break the training into stages of length G and greedily
minimize the second moment of the true state at the end
of each stage. More details about the control structure and
training procedure are provided in Section VII. In the rest of
the sections we use the M-P-G terminology to name our neural
network based strategies; as an example M2-P2-G2 refers to
a memory-2 control strategy that is 2-periodic and trained in
stages of length 2.

IV. MAIN RESULTS

We present our main results in Fig. 1, which shows that
neural network based strategies can outperform the previously
best known strategy (PBS) [9]. The performance of the PBS
plotted here comes from optimizing over the parameters of the
strategy from [9].



TABLE I
MAXIMUM GROWTH FACTORS

Strategy PBS M1-P2-G4-FIT M1-P2-G4 M1-P3-G6 M2-P2-G2-FIT M2-P2-G2 M3-P2-G2 M3-P3-G3 M4-P4-G4

a∗ 1.032 1.025 1.026 1.026 1.097 1.097 1.115 1.137 1.156

We tabulate the maximum growth factor that can be stabi-
lized for different strategies in Table I. Restricting to memory-
2 control strategies, M2-P2-G2 and can stabilize growth fac-
tors up to 1.097 while the PBS from [9] (which also uses
memory-2) only stabilizes up to growth factors of 1.032. In-
creasing the memory of the control strategies further improves
the performance of the neural-network-trained controllers and
our best strategy can stabilize growth factors up to 1.156.
However, there are diminishing returns to increasing memory.

We further show in the following section that these strategies
are well-structured.

V. NEURAL-NETWORK-BASED STRATEGIES

This section explores two successful control strategies in
detail. We see that these strategies can be understood as linear
combination of a few simple features.

A. M1-P2-G4

This control strategy uses only the current observation to
compute the control and has a 2-periodic structure. It uses two
networks, one for even timesteps and one for odd timesteps,
as described in Sec. VII. Since the magnitude of states,
observations, and controls for the system decay with time,
we need to scale them appropriately as described in detail in
Sec. VII. The observations, Yn, are scaled up to Ỹn/sn before
being fed into the network. The output of the network, Ũn,
is scaled down to Un = snŨn before being applied to the
system. Fig. 2 shows Ũn, the output of the neural network, as
a function of Ỹn, the input of the neural network, at even and
odd time steps.

A first observation about this strategy is that it mostly
ignores the sign of Ỹn. This makes sense, since the zero-mean
multiplicative noise means there is no information in the sign
of Ỹn. Further, it flips sign at even and odd times and seems
to have a “probe” and then “minimize” structure, where at the
even timestep it sends a test control that might increase the
state magnitude, but uses the observation from this to reduce
the magnitude at the following timestep. The system probing
suggests there is an element of “active” learning in the strategy.

Based on the shape of the plot, we choose to use a piecewise
linear fit (ffit) for the function, and the best fit (using input
range [−5, 5]) is shown in Fig. 3.

We use the following features for the fit: max(−Ỹn+hL, 0),
max(−Ỹn, 0), max(Ỹn, 0), max(Ỹn−hR, 0), and 1 (i.e. a bias
term). The parameters hR and hL as well as the weights were
identified using non-linear least-squares for both the even and
odd time control strategies and are listed in Appendix D.

We test the performance of ffit on the actual system and
find that it has performance very close to that of the neural
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Fig. 2. Ũ = f(Ỹ ) for each neural network. For n > 30, 95% of Ỹ ’s fed to
the neural network lie in the shaded region.
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Fig. 3. Piecewise linear fit with four linear segments for the M1-P2-G4
controller. The red dots show generated control Ũn as a function of Ỹn. For
the first fit, the residuals are bounded in magnitude by 0.025. For the second
fit, residual values lie in (-0.125, 0.075).

network based strategy (see Fig. 4). We see that both strategies
can stabilize similar growth factors, 1.025 vs 1.026 (Table I).

For both the neural-network-based strategy and the fit
strategy the effective function that relates Yn to Un changes
with time n due to our scaling operation. To check that the
scaled inputs Ỹn, continue to lie in the range that was used
to fit the piecewise linear strategy for different n, we plot the
95th percentile values of |Ỹn| in Fig. 5. We see that in around
30 timesteps the 95th percentile values stabilize to a consistent
range depicted by the shaded region in Fig. 2 and the outer
regions are used only for times n < 30 and for outliers.
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Fig. 4. Performance comparison of the ffit strategy to neural network strategy.
Both strategies exhibit similar performance.
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Fig. 5. 95th percentile value of |Ỹn| (the dots) fed to the neural network with
time : There is a difference in the even and odd timesteps as expected for
P = 2. What is notable is that after about 30 timesteps the inputs stabilize
to being in close ranges for both the neural-network-trained controller and
the piece-wise linear fit controller. This suggests that good control strategies
eventually stabilize the input distribution to the network (up to scaling).

B. M2-P2-G2

Next we consider a memory-2 control strategy with period
2. The successfully trained neural networks use the two most
recent scaled observations, Ỹn and Ỹn−1, to output Ũn, and
plots for these functions are shown in Fig. 6.
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Fig. 6. This figure shows the value of Ũn at odd and even timesteps as a
function of Ỹn and Ỹn−1.

These functions exhibit cross-sectional similarity to the
memory-1 strategy in being largely indifferent to the sign
of Ỹn and increasing the magnitude of the control based on
the magnitude of the observation. However, the relationship
between Ỹn and Ỹn−1 plays an important role in the control
strategy now. If we look at the plane spanned by Ỹn and
Ỹn−1 then we can identify four lines in this plane (angles)
where the behaviour of the strategy changes. These lines
correspond to the creases on the Ũn surface. Motivated by this
observation we fit the function (gfit) using the following fea-
tures: |Ỹn−1| and |Ỹn|, as well as, | cos(θ1)Ỹn−1−sin(θ1)Ỹn|,
| cos(θ2)Ỹn−1 + sin(θ2)Ỹn| (i.e. oriented along diagonal lines
Yn = ± cot(θ)Yn−1) and 1 (for bias). While we do not yet
have a clean explanation for the exact reason why this strategy
works, we hope to in future work.

The strategy generated by the fit exhibits similar perfor-
mance to the network as shown in Fig. 7, and can stabilize
similar growth factors as provided in Table I. Like the M = 1
strategy, this M = 2 strategy exhibits the same zigzag
behavior at even and odd timesteps, and the range of scaled
inputs also stabilizes after about n = 30 timesteps.
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Fig. 7. Performance comparison of the gfit strategy to the neural network
generated strategy. The performance of these strategies and the maximum
growth factor that these can stabilize are similar.

VI. EFFECTS OF THE PARAMETERS: M, P, G

From section IV it is clear that increasing memory (M ),
controller period (P ) and planning horizon (G) improve
performance. This section investigates the effects of these
parameters in more detail and Fig. 8 summarizes the results.

We observe that both of the memory-1 strategies, M1-P2-
G4 and M1-P3-G6 have similar performance; and increasing
the period P or the horizon G while keeping M constant does
not seem to improve performance. We notice that when G is
a multiple of P , the value of P plays a role in the structure
of the strategy. The last action during the period (i.e. when
n = −1 (mod P )) is always the minimizing control action,
whereas earlier actions can be thought of as probing actions.
The effect of increasing G to be higher multiples of P is
described in Appendix B.

We were unable to train the memory-1 control strategy
to work with P = 1. Comparing all the strategies M2-P2-
G2, M3-P2-G2, M3-P3-G3, we see that the control structure
with the most information and degrees of freedom gave the
best performance. We believe there are diminishing returns to
increasing M, P and G.

VII. METHODS

In this section we list some challenges faced by neural
network based control and describe how these motivated the
structure of our control strategy and training procedure.

A. Control structure

Each control strategy consists of a set of P networks. At
time n the network corresponding to n (mod P ) is used to
generate the control Un based on the past M memory of
observations Yn, . . . Yn−M+1. The set of networks over the
period P form the control strategy that aims to minimize
the second moment of the system state N time-steps in the
future. We use a simple one hidden layer architecture for each
network with 20 hidden units and ReLU activation.

Since we periodically reuse the same network for control,
it is important to consider the inputs and outputs to the
network carefully. A good control strategy will decrease the
magnitude of the state Xn and thus also the magnitude of the
observations Yn and the required Un. While an observation
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Fig. 8. Comparison of strategies with different M,P,G values. For memory-
1 control strategies P = 2 and P = 3 result in similar performance but
how the strategy alternates between probing and minimization step varies.
Increasing M while keeping P,G constant results in better performance but
further improvement can be obtained by increasing P,G as well.

value of 0.5 might be typical for timestep 0, it would be a
very atypical observation at timestep 100, and hence must be
treated differently by the controller. To deal with this we scale
inputs and outputs of the networks as described below.

We use an exponential scaling factor sn given as:

sn = αb
n
P c.

At time n, we scale the observations Yn by sn to give Ỹn as:

Ỹi =
Yi
sn

i = n−M + 1, . . . , n.

Note that at time n, we scale both the current and previous
observations by the scaling factor corresponding to time n in
order to preserve the relative order between these observations.
Similarly we scale down the network’s output Ũn to Un before
applying the control action to the system with Un = snŨn.

We identify the best α by a hyperparameter search and
provide the values used in Appendix C. A value of α that
is too high or too low leads to poor control strategies that do
not generalize. The optimal α is one that leads to a constant
second moment of the inputs to the neural networks after the
rescaling.

B. Training procedure and network architecture

To train the neural networks we break the training horizon
N into stages of length G and greedily minimize the second

moment of the true state every G steps. We use truncated
backpropagation through time and prevent the flow of gradi-
ents across stages [29]. We choose G = kP for some positive
integer k. As an example for M = 2, P = 2, G = 2 the
first stage involves minimizing E[X2

2 ] and the second stage
involves minimizing E[X2

4 ]. During the second stage we treat
Y2 and Y1 as fixed constants not dependent on the parameters
of the neural networks.

Our control structure and training procedure resembles
that of a stateless recurrent neural network with our scaling
procedure and periodic control structure performing the role
of the state. The structure that we impose makes it easier to
train our control strategies as compared to training recurrent
neural networks.

We use a training batch size of 4000 and run rollouts of
the system (3) for a total training horizon of 24. We train our
neural networks for 10000 iterations using the Adam optimizer
with a learning rate of 10−4.

C. Testing procedure

To test our controllers we run rollouts of the strategies for
batches of 106. Note that though this batch size is large it, is
not large enough to see certain types of inputs. This might
make some strategies appear to be successful even though
they should fail. For instance, the probability that all noise
realizations are positive for a rollout up to time 50 is roughly
9×10−16 and we would require a batch size of around 1017 to
consistently see such inputs. However, we believe this is not
an issue with our strategies since the rate of decrease of the
second moment is consistent across time and our batch size is
large enough that the empirical test performance for small n
is an accurate indicator for the true test performance.

VIII. CONCLUSIONS AND FUTURE WORK

We find that by choosing the appropriate control structure
and training procedure we can learn neural network based
control strategies that can stabilize a multiplicative observation
noise system and outperform hand-crafted strategies. Allowing
strategies to use more memory improves performance but has
diminishing returns. There is a structure and planning aspect to
the learned strategies that can be expressed in terms of simple
features. However there are many open questions. Can we
exactly quantify how the memory and period of the controllers
affects their performance and is there an optimal memory
and period to use? Can we better understand the probe and
minimize aspect of the controllers? Can this provide insights
into the fundamental communication bottlenecks imposed by
multiplicative noise in control systems, for example, is there
some amount of “active” learning that must be done in these
systems by probing? We hope to explore these questions in
future work.
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APPENDIX

A. Proof of Theorem 1

For the sake of this proof, let us label the states, ob-
servations, multiplicative noise and control actions for the
system Sa as Xa

n, Y
a
n , Z

a
n and Uan respectively. We will use

the notation Xn, Yn, Zn and Un for the system S. Consider a
coupling of the two systems such that X0 = Xa

0 and Zan = Zn
for all n.

Suppose the control action at time n, Un, for system S
is given by Un = πn(Y0, Y1, . . . , Yn). Note that here πn :
Rn → R is a deterministic function given the realizations
of the observations. Then, we construct the following control
actions for system Sa,

Uan = πan(Y
a
0 , Y

a
1 , . . . , Y

a
n ) (5)

= an+1πn

(
Y a0 ,

Y a1
a
, . . . ,

Y an
an

)
. (6)

We will prove by induction that under these sets of controls,
the true state and observations for the two systems are related
as,

Xa
n = anXn, Y an = anYn.

Note that by our assumption on the initial state and noise
realizations the base case for n = 0 is true. Now assume that
the claim is true for n ≤ k. We have,

Xa
k+1 = aXa

k − Uak

= ak+1Xk − ak+1πk

(
Y a0 ,

Y a1
a
, . . . ,

Y ak
ak

)
= ak+1Xk − ak+1πk (Y0, Y1, . . . , Yk)

= ak+1(Xk − Uk)
= ak+1Xk+1.

Further since the noise realizations are same we have

Y ak+1 = Zak+1X
a
k+1 = Zk+1a

k+1Xk+1 = ak+1Yk+1.

Thus the claim is true for n = k + 1 and this completes the
inductive proof.

Next we will show that if the minimum decay factor for
system Sa is d∗ then system Sa can be stabilized for a < 1/d∗.

Suppose π∗0 , . . . , π
∗
n minimize

(
E[|Xn|2]
E[|X0|2]

) 1
2n

for each n. Let
π∗n denote the minimizing control action for system S and
consider (πan)

∗ as the control action for system Sa, where
(πan)

∗ and π∗n are related as in Equation (6).
From Definition 2 we have,

d∗ = lim sup
n→∞

(
E[|Xn|2]
E[|X0|2]

) 1
2n

.

Then by definition of lim sup we have for every ε > 0, there
exists N such that for all n ≥ N ,

d∗ ≥
(
E[|Xn|2]
E[|X0|2]

) 1
2n

− ε.

Thus,

(d∗ + ε)2n ≥
(
E[|Xn|2]
E[|X0|2]

)
=

1

a2n
E[|Xa

n|2],

since E[|X0|2] = 1. Any a < 1/d∗ can be written as
a = (1− δ)(1/d∗) for some δ > 0. Thus we have,

E[|Xa
n|2] ≤ a−2n(d∗ + ε)2n

=

(
1− δ + ε(1− δ)

d∗

)2n

.

Since this bound holds for any ε > 0, taking ε = δd∗

2(1−δ) , there
exists N such that for all n ≥ N ,

E[|Xa
n|2] ≤

(
1− δ

2

)2n

< 1.

Further, because supn<N E[|Xa
n|2] is finite, we conclude that

system Sa is stabilizable.
Next we will show that the system Sa cannot be stabilized

for any a > 1
d∗ . Consider such an a = 1

d∗ (1 + γ) for some
γ > 0. Suppose for contradiction there exists a set of control
actions π̃a0 , π̃

a
1 , . . . , π̃

a
n such that supn E[|Xa

n|2] is finite. Thus
there exists K <∞ such that for all n,

E[|Xa
n|2] ≤ K.

Further using the set of control actions π̃0, π̃1, . . . , π̃n where
π̃an and π̃n are related as in Equation (6) we have,

E[|Xa
n|2] ≤ K

=⇒ a2nE[|Xn|2] ≤ K

=⇒ a2n
E[|Xn|2]
E[|X0|2]

≤ K

=⇒
(
E[|Xn|2]
E[|X0|2]

) 1
2n

≤ (K)
1
2n a−1 = (K)

1
2n

d∗

1 + γ
. (7)

Choose N such that for all n ≥ N ,

(K)
1
2n < (1 + γ).

Note that such an N exists because K is finite and
limn→∞(K)

1
2n = 1. Since the upper bound in Equation (7)

holds for all n, we have for n ≥ N ,(
E[|Xn|2]
E[|X0|2]

) 1
2n

< d∗,

Thus, we have a set of control actions π̃0, π̃1, . . . , π̃n such
that,

lim sup
n→∞

(
E[|Xn|2]
E[|X0|2]

) 1
2n

< d∗

which is a contradiction since we assumed that d∗ was the
minimum decay factor. This completes the proof.



TABLE II
α VALUES

Strategy M1-P2-G4-FIT M1-P2-G4 M1-P3-G6 M2-P2-G2-FIT M2-P2-G2 M3-P2-G2 M3-P3-G3 M4-P4-G4

α 0.955 0.955 0.933 0.832 0.832 0.808 0.685 0.551

B. Effect of the parameter G

In Sec. VI we discussed the motivation for setting G as mul-
tiples of P . For memory-1 strategies we observed that setting
G = P results in overfitting while training leading to poor test
performance. Keeping M and P constant and increasing the
value of G does not lead to better performance during training
but alleviates the problem of overfitting by taking account of
the fact that the same networks are being used across multiple
periods, while minimizing the cost function. Thus the strategy
M1− P2−G4 performed much better that M1− P2−G2
during testing.

C. Values for scaling hyperparameter α

We list the alpha values for different strategies in Table.
II. We see that strategies that perform better and lead to
faster decay of rates correspond to smaller values α. For the
fit strategies we use the same values as the original neural
network based strategy.

D. Fit strategy for M1-P2-G4

We can express the function that relates the scaled inputs Ỹn
to the network to the output of the network Ũn by ffit where,

ffit(Ỹ ) = (m1 −m2)max(−Ỹ + hL, 0) +m2 max(−Ỹ , 0)
+m3 max(Ỹ , 0) + (m4 −m3)max(Ỹ − hR) + b.

The resultant values for the parameters
hL, hR,m1,m2,m3,m4, and b for even and odd timestep
networks are as follows.

Fit Parameter Even time Odd Time
hL 1.807 2.367
hR 1.808 2.429
m1 0.406 -0.512
m2 0.378 -0.561
m3 0.317 -0.568
m4 0.476 -0.486
b 0.542 -0.329

E. Fit strategy for M2-P2-G2

Since this is a memory-2 strategy, we can express the
function that relates the scaled inputs Ỹn, Ỹn−1 to the output
Ũn by gfit where,

gfit

(
Ỹn, Ỹn−1

)
= k1

∣∣∣Ỹn−1∣∣∣+ k2

∣∣∣Ỹn∣∣∣+ k3

∣∣∣cos(θ1)Ỹn−1 − sin(θ1)Ỹn

∣∣∣
+ k4

∣∣∣cos(θ2)Ỹn−1 + sin(θ2)Ỹn

∣∣∣+ b.

The resultant values for the parameters k1, k2, k3, k4, θ1, θ2,
and b for even and odd timestep networks are given below.

Fit Parameter Even time Odd Time
k1 -0.455 0.863
k2 -0.924 1.302
k3 0.271 -0.548
k4 0.279 -0.585
θ1 0.654 0.856
θ2 0.682 0.870
b -0.675 0.236


