Vignesh Subramanian

Email: vignesh.subramanian@berkeley.edu

Website: vignesh-subramanian.github.io LinkedIn: vigneshs258 Google Scholar link

WORK EXPERIENCE

PlusAI, Inc.

Senior Research Engineer

September 2022 - Present

- Designed, implemented, trained and deployed a CNN-based model for vehicle turn indicator and brake light status detection, securing a patent for this idea
- Leading efforts to move towards a data-driven approach to prediction and planning by employing a transformer-based joint agent trajectory prediction model

Machine Learning Internship

May - August 2021

Plus, Cupertino

• Worked on state of the art image based anchor-free object detection and tracking implementation in PyTorch

EDUCATION

University of California, Berkeley

August 2017 - August 2022

Doctor of Philosophy in Electrical Engineering and Computer Science

Grade Point Average: 4.0/4.0

Research Adviser: Prof. Anant Sahai

Indian Institute of Technology Bombay, India

July 2010 - June 2015

Master of Technology in Electrical Engineering, specializing in Communication and

Signal Processing

Bachelor of Technology in Electrical Engineering Minor in Computer Science and Engineering

Research Adviser: Prof. Sibi Pillai, Prof. Rajbabu Velmurugan

Cumulative Performance Index: 9.86/10

RESEARCH INTERESTS

Deep learning for autonomous driving systems, Perception, Motion Prediction, Machine Learning Theory, Machine learning applications in wireless communication and control

PROGRAMMING SKILLS

PROGRAMMING Python, PyTorch, Tensorflow, C++, MATLAB

SELECTED PUBLICATIONS

Vignesh Subramanian, Rahul Arya, Anant Sahai Generalization for multiclass classification with overparameterized linear models, Advances in Neural Information Processing Systems (**NeurIPS**), 2022

Vidya Muthukumar, Adhyyan Narang, **Vignesh Subramanian**, Mikhail Belkin, Daniel Hsu, Anant Sahai Classification vs regression in overparameterized regimes: Does the loss function matter?, Journal of Machine Learning Research (**JMLR**), 2020

Vignesh Subramanian, Moses Won, Gireeja Ranade Learning a Neural-Network Controller for a Multiplicative Observation Noise System, IEEE International Symposium on Information Theory (\mathbf{ISIT}), 2020

Vidya Muthukumar, Kailas Vodrahalli, **Vignesh Subramanian**, Anant Sahai: *Harmless interpolation of noisy data in regression*, IEEE Journal on Selected Areas in Information Theory (**JSAIT**), Special Issue on Deep Learning: Mathematical Foundations and Applications to Information Science, 2019

Anant Sahai, Joshua Sanz, **Vignesh Subramanian**, Caryn Tran, Kailas Vodrahalli Blind interactive learning of modulation schemes: Multi-agent cooperation without co-design, **IEEE Access**, Special Section: Artificial Intelligence for Physical-layer Wireless, 2019

PROJECTS

Generalization for Multiclass Classification

August 2021 - August 2022

- Analyzed the multi-class classification loss of minimum-norm interpolating solutions in an asymptotic overparameterized setting where both the number of underlying features and the number of classes scale with the number of training points
- Proved that the multiclass problem is "harder" than the binary one due to the relatively fewer training examples per class in the multiclass setting

Classification versus Regression for Minimum Norm Interpolating Solutions August 2019 - August 2021

- Analyzed the classification and regression loss of minimum norm interpolating solutions in the overparameterized setting.
- Related the classification error to statistical signal processing concepts of shrinkage and false-discovery and computed sharp upper and lower bounds for these quantities
- Showed the existence of a regime where asymptotically classification performs well but regression does not

Harmless interpolation of Noisy Data for Regression

August 2019 - August 2020

- Investigated the overparameterized regime in linear regression, where all solutions that minimize training error interpolate the data, including noise
- Characterized the fundamental generalization (mean-squared) error of any interpolating solution using the statistical signal processing concepts of shrinkage and false-discovery

Machine learning for Physical Layer Wireless Communication

August 2018 - August 2022

- Designed a blind interactive learning protocol for modulation schemes in the multi-agent setting without codesign
- Experimentally verified the universality and robustness of the protocol and showed that it achieves bit error rates similar to the optimal baseline

Learning Stabilizing Control under Multiplicative Noise

July 2019 - Januray 2020

- Explored use of neural networks to discover control strategies for stabilizing a system under multiplicative noise
- Proposed an architecture and training procedure tailored for the control problem that enables the network to generalize and output controls for rollouts longer than the training horizon
- Showed that the neural network based control strategy beats current best known strategies including optimal linear strategies

AWARDS

- Recognized as an Outstanding Graduate Student Instructor for academic year 2019-2020 based on overall effectiveness
- Recipient of the **EECS Department Fellowship** awarded to promising first year graduate students for the academic year 2017-2018
- Awarded Institute Gold Medal for exemplary academic performance, 2015
 Awarded for achieving Institute Rank 1 based on highest cumulative grade points among 400 students
- Received Institute Silver Medal for outstanding academic record, 2015
 Awarded for achieving Department Rank 1 based on highest cumulative point index among 67 students in the Electrical Engineering department